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1. Consider a microswimmer moving in two dimensions, whose motion is described by the Langevin
equations

v(t) =
dr

dt
= v n(t) + u(t) ,

dθ

dt
= ω + β(t) , (1)

where r(t) = (x(t), y(t)), n(t) = (cos θ(t), sin θ(t)) and u(t), β(t) are Gaussian white noise
variables with correlations

〈ui(t)〉= 0 , 〈ui(t)uj(t′)〉= 2D δij δ(t− t′) , i, j = 1, 2 ,

〈β(t)〉 = 0 , 〈β(t)β(t′)〉 = 2Dr δ(t− t′) .

(a) [5 marks] Discuss the physical meaning of the various terms in (1). Do (1) describe a
Markov process? Justify your answer.

(b) [10 marks] Show that
〈[θ(t)− θ(0)]2〉 = ω2t2 + 2Drt ,

and
〈v(t) · v(0)〉 = 4Dδ(t) + v2 cos(ωt)e−Drt .

Provide details of your workings.

(c) [5 marks] Show that the mean-square displacement is given by

〈[r(t)− r(0)]2〉= 4Dt+
2v2Drt

D2
r + ω2

+
2v2(ω2 −D2

r)

(D2
r + ω2)2

+
2v2 e−Drt

(D2
r + ω2)2

[
(D2

r − ω2) cosωt− 2ωDr sinωt
]
.

(d) [5 marks] Discuss the limiting behaviours of 〈[r(t)− r(0)]2〉 for short and long times.
What happens in between?

What is the Fokker-Planck equation for the probability distribution of the swimmer’s
position at very late times?
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2. Consider the stochastic dynamics of two particles under the influence of hydrodynamic inter-
actions, whose trajectories are denoted as Rαi (t), where α = 1, 2 (particle label) and i = 1, 2, 3
(coordinate index). The particles interact with a potential U(|R2 −R1|), and are otherwise

free. Due to the hydrodynamic interactions, some components of the mobility tensor µαβij ,

which we will represent as µαβ, could be functions of R2 −R1. Both particles are spherical,
and have radii of a1 and a2.

(a) [2 marks] In the asymptotic regime where the particles are far from one another, write
down expressions for the components of the mobility tensor, and identify those that
depend on R2 −R1.

(b) [4 marks] Write down the Langevin equations for the system, defining any new quantities
that you need to introduce.

(c) [6 marks] Explain briefly how the Langevin equations can be used to derive the following
Fokker-Planck equation:

∂tP(R1,R2, t) =∇1 ·
[
µ11 · (kBT ∇1P + ∇1U P) + µ12 · (kBT ∇2P + ∇2U P)

]
+∇2 ·

[
µ21 · (kBT ∇1P + ∇1U P) + µ22 · (kBT ∇2P + ∇2U P)

]
, (2)

where ∇α denotes gradient with respect to Rα. Justify any choices you make in modifying
the equations.

(d) [7 marks] Using a transformation to the centre of mass coordinates R = 1
2

(
R2 + R1

)
and the relative coordinates r = R2 −R1, show that the Fokker-Planck equation can be
written as

∂tP(R, r, t) = kBT ∇R · [M ·∇RP] + kBT
(
µ22 − µ11

)
∇R · (∇rP)

+
1

2

(
µ22 − µ11

)
(∇rU) · (∇RP) + ∇r · [m · (kBT ∇rP + ∇rU P)] , (3)

where M = 1
4

(
µ11 + µ22 + 2µ12

)
and m = µ11 + µ22 − 2µ12.

(e) [6 marks] By calculating ∂t 〈R ·R〉 directly from the Fokker-Planck equation or otherwise,
show that the diffusion coefficient of the centre of mass of the pair of particles is given by

DCM =
kBT

12

∫
d3r tr

(
µ11 + µ22 + 2µ12

) 1

Z
e−U(r)/kBT ,

at equilibrium, where Z =
∫

d3r e−U(r)/kBT is the canonical partition function describing
the internal degrees of freedom of the compound system. Justify the form of this result.
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3. (a) [6 marks] Using path-integration, find the expression for the conditional probability P(r, t|r0, t0)
of finding a freely diffusing particle in d = 3 at position r at time t, knowing that it has
started from position r0 at time t0. Write down the corresponding forms of the same
quantity in arbitrary dimension d.

(b) [3 marks] Write down the path-integral representation for the conditional probability, for
a particle that undergoes stochastic dynamics in a potential V (r), using Stratonovich
convention (Θ(0) = 1/2).

(c) [12 marks] For a harmonic potential V (r) = 1
2kr

2, show that

P(r, t|r0, t0) =

(
βk

2π
[
1− e−2k(t−t0)/ζ

])3/2

exp

{
−βk

2

[
r− r0 e

−k(t−t0)/ζ
]2[

1− e−2k(t−t0)/ζ
] } . (4)

where β = 1/(kBT ) is the inverse temperature and ζ is the friction coefficient.

(d) [1 mark] Can k be negative? If so, what type of question can one address by setting k to
negative values?

(e) [3 marks] Justify the form of (4) by examining different limiting behaviours that related
the result to an expected or known form.

A15282W1 Page 4 of 4 End of Last Page


