
Examiners’ Report: Final Honour School
of Mathematical and Theoretical Physics

Part C and MSc in Mathematical and
Theoretical Physics Trinity Term 2021

November 8, 2021

Part I

A. STATISTICS

• Numbers and percentages in each class.

See Table 1.

Numbers Percentages %
2021 2020 (2019) (2018) (2017) (2016) 2021 2020 (2019) (2018) (2017) (2016)

Distinction 42 (42) (40) (25) (31) (18) 63 (76) (76) (60) (76) (86)
Merit 10 (9) (6) (n/a) (n/a) (n/a) 15 (17) (11) (n/a) (n/a) (n/a)
Pass 12 (3) (6) (17) (10) (3) 18 (5) (11) (40) (24) (14)
Fail 3 (1) (1) (1) (0) (0) 4 (2) (0) (0) (0) (0)
Total 67 (55) (53) (42) (41) (21) 100 (100) (100) (100) (100) (100)

Table 1: Numbers and percentages in each class

• Numbers of vivas and effects of vivas on classes of result.
No vivas were held.

• Marking of scripts.
All dissertations and three mini-project subjects were double-marked,
after which the two markers consulted in order to agree a mark be-
tween them.

All written examinations and take-home exams were single-marked
according to carefully checked model solutions and a pre-defined
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marking scheme which was closely adhered to. One mini project
subject which followed a mark scheme (Galactic and Planetary Dy-
namics) was also marked in the same way. A comprehensive inde-
pendent checking procedure is also followed.

B. New examining methods and procedures

Due to the pandemic, new procedures were introduced. Written exam-
inations in Trinity term took place in the form of timed open-book ex-
aminations, where students had the same length of time to complete the
open-book examination as they would have had for a written examination,
plus 30 minutes to upload/download the examination paper, and to scan
and submit their solutions. Students were required to uphold an honour
code.

C. Changes in examining methods and procedures currently
under discussion or contemplated for the future

None.

D. Notice of examination conventions for candidates

Notices to candidates were sent on: 2nd October 2020 (first notice), 24th
November 2020 (second notice),1st March 2021 (third notice), 5th May 2021
(fourth notice) and 17th May 2021 (final notice).

The examination conventions for 2020-2021 are on-line at
http://mmathphys.physics.ox.ac.uk/students.
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Part II

A. General Comments on the Examination

B. Equality and Diversity issues and breakdown of the re-
sults by gender

Removed from public version.

C. Detailed numbers on candidates’ performance in each
part of the examination

The number of candidates taking each paper is shown in Table 2 and in the
Average USM per Formal Assessment graph below. In accordance with
University guidelines, statistics are not given for papers where the number
of candidates was five or fewer.
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Table 2: Numbers taking each paper
Paper Number of Avg StDev

Candidates USM USM
Advanced Fluid Dynamics - - -
Advanced Philosophy of Physics - - -
Advanced Quantum Field Theory 41 70 13.5
Advanced Quantum Theory 27 68 17.6
Algebraic Geometry - - -
Algebraic Topology - - -
Applied Complex Variables - - -
Approximation of Functions - - -
Collisionless Plasma Physics
Computational Algebraic Topology - - -
Continuous Optimisation - - -
Differentiable Manifolds 12 72 29
Dissertation (single unit) 22 76 9
Dissertation (double unit) 21 78 8
Elliptic Curves - -
Homological Algebra - - -
Galactic and Planetary Dynamics
General Relativity I 33 63 23
General Relativity II 19 67 12
Geophysical Fluid Dynamics - -
Geometric Group Theory - - -
Groups and Representations 52 71 13
Introduction to Quantum Information 29 63 22
Introduction to Schemes - - -
Kinetic Theory - - -
Networks 9 73 7.4
Numerical Linear Algebra - - -
Perturbation Methods 8 66 15
Quantum Field Theory 67 71 9.6
Quantum Matter 17 67 13
Radiative Processes and High Eng. Astro. - - -
Random Matrix Theory 8 76 15
Stochastic Differential Equations - - -
String Theory I 29 71 5
Supersymmetry and Supergravity 7 73 29.4
Theories of Deep Learning - - -

The number of candidates taking each homework completion course is
shown in Table 3. In accordance with University guidelines, statistics are
not given for papers where the number of candidates was five or fewer.
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Table 3: Numbers taking each homework completion course
Paper Number of Percentage

Candidates completing course
Advanced Fluid Dynamics - -

Advanced Quantum Theory - -
Astroparticle Physics 9 100
Collisionless Plasma Physics - -
Conformal Field Theory 31 100
Cosmology 20 100
Galactic and Planetary Dynamics - -
Group and Representations 51 100
High Energy Density Physics - -
Kinetic Theory - -
Nonequilibrium Statistical Physics 9 100
Quantum Field Theory in Curved Space Time 22 100
Quantum Matter - -
Renormalisation Group 17 94
Soft Matter Physics 100
String Theory II 8 100
Supersymmetry and Supergravity 14 100
Symbolic, Numerical and Graphical Scientific Programming 7 100
The Standard Model and Beyond I 11 91
The Standard Model and Beyond II - 100
Topological Quantum Theory 23 100

D. Assessors’ comments on sections and on individual ques-
tions

Advanced Fluid Dynamics

Q1 Part (a). All students knew basically what to do, but most lost quite a bit
of time because they chose to copy far more than needed from the lecture
notes, despite being urged by the script not to do so. There was some low-
level confusion about perturbing and differentiating b. Some lost marks
because the part of the question asking them to show that the reduced
equations for the Alfvénic fields were unaffected by the introduction of
anisotropic pressure was ignored.

Part (b). Everybody understood how to linearise the CGL equations. No-
body seemed to realise that the 5th equation in the set was the perpendic-
ular pressure balance, connecting δp⊥ to δB. Consequently, no one derived
the right dispersion relation.

Part (c). Very few students attempted this part and saw the basic physical
point although perhaps a little vaguely (the restoring force is −∇δp‖; in
the CGL scheme, δp‖ is not hard-coupled to δp⊥ and, thereby, to δB via
the perpendicular pressure balance, so it can be a lot larger than in the
isotropic-pressure case; the “slow” wave can consequently propagate at ∼
sound speed).
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Q2 All parts received at least one completely successful attempt, though
no candidate completed all parts successfully.

Part (a) was mostly done well, though a few candidates includes time
derivatives and did not justify why these later vanished. The expected
interpretation is that the viscous dissipation is instantaneously equal to
the rate of working by surface stresses on the boundary.

Part (b) was also mostly done well, though a few candidates incorrectly
relied upon a nonexistent “linearity” property for the dissipations due
to two different flows. Instead, one should write down the dissipation
integral from part (a) for the volume of fluid outside the particles, then use
u = u(0) on the outer boundary S0.

In part (c) several candidates incorrectly tried to apply the reciprocal theo-
rem to individual surfaces, the outer boundary S0 and a particle surface Sp,
rather than to the complete bounding surface of a fluid volume. Several
candidates omitted the second part, to show that the contribution from
u · σ(0)

· n vanishes for rigid particles. The intended approach relies upon
u = Up + Ωp × (x − xp) being a rigid-body motion on the boundary Sp to
simplify the surface integral. All successful attempts from candidates re-
lied instead on the divergence theorem, and implicitly defined u to be a
rigid-body motion inside the particle (where there is no fluid) so that the
strain e = 0 inside the particle. Full marks were given for this approach.

In part (d) several candidates asserted that the contributions from u(0)
p

and Ω(0)
p vanish identically due to vector calculus identities. Instead, they

vanish because the particles are force-free and torque-free.

Part (e) was mostly done well by those who attempted it, though a few can-
didates appeared to have relied upon the end result to evaluate the surface
integral and/or the volume fraction occupied by particles in intermediate
steps.

Advanced Quantum Field Theory

Question 1 related to 1–loop calculations within scalar QED. Parts (ii) and
(iv) were answered reasonably well. The principle issues here came from
algebra mistakes, and/or time constraints which could lead to the student
not managing to get to the final answers. Parts (i) and (iii) are rather
straightforward, and were answered very well in general. Part (v) was an-
swered well in general, although with some students forgetting to answer
the part relating to Z2 and/or not quite understanding the conceptual issue
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relating to the ξ dependence of observables.

Question 2 (a) related to a tree-level scattering calculation. Part (i) was
rather straightforward and was answered very well in general. Part (ii)
was from a conceptual point of view an application of techniques covered
in detail in the course. However, the fact that both initial and final state
particles were kept as massive lead to the algebra being a little too intricate
for many students, although a large fraction of marks were available (and
gained) for carrying out the majority of the calculation, even if the student
struggled to arrive at the exact results due to an algebra issue relating
to this. In a minority of cases students struggled to set the problem up,
perhaps relating to the mixing of quark and QED interactions. Part (iii)
required an essentially textbook application of colour algebra, and was
answered reasonably well. Part (iv) was more challenging, as such a com-
bination of both QED and QCD diagrams (and their lack of interference)
was not explicitly covered in the course. Although some students spotted
this and did well, many struggled with this part, or did not answer.

Question 2 (b) related to a different tree–level calculation in the t‘Hooft
Veltman gauge. Almost all students could set the problem up, and achieve
some marks, and a reasonable number achieved full marks.

Question 3 (a) related to spontaneous symmetry breaking. In some cases
this was answered well, but not by many students. This was in many
cases clearly related to a lack of time available to answer, i.e. in some cases
almost nothing was written. However in part it may have been related
to the fact that this was covered quite late on in the course and was a
somewhat challenging question.

Question 3 (b) related to manipulations of fermionic path integrals. This
was well covered in the course (and indeed in general terms in the QFT
course) and was very well answered in the majority of cases.

Advanced Quantum Theory

A question on obtaining the path integral for the simple harmonic oscillator.
Most students gave excellent answers to parts (a-c). In part (b), since
generous hints were given in the question, details of the derivation were
important to receive full marks; several students were penalized for not
justifying why linear time derivative terms vanish (due to the equations
of motion and the boundary conditions) or explaining why the change
in integration measure is trivial. When deriving the classical action in
part (c), marks were subtracted for answers with variations on the theme
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of “and after some algebra we see that...” since the final answer was
stated in the question. A handful of students gave an elegant solution
involving evaluating xẋ|t0, which received full marks as long as it was
properly explained. Fewer students gave a satisfactory answer to part (d).
The key idea, as suggested by the hint, is to write the Schrödinger equation
for the unitary time evolution, and then insert sufficient resolutions of
the identity in position space to write this as an integral equation whose
eigenfunction is the ground state, and use the path integral to simplify
it. Many students started correctly but then got confused over how to
complete the calculation, with one or two missing the fact that the necessary
Gaussian integral was provided in the question. Finally, part (e) was
attempted by many students but in spme cases they simply quoted the
free particle result without explaining how it arises as a limiting case of the
harmonic oscillator, which only received partial marks. The distribution
of marks was roughly consistent with that envisaged.

A question on Lifshitz transitions within Landau theory. Nearly all stu-
dents gave a satisfactory answer to part (a). Part (b) was the meat of the
question, and should have been a straightforward step-by-step application
of Landau theory. The simplest route to establishing the phase boundaries
(i.e., computing free energies) and the fact that there are only 3 phases were
both spelled out in the problem. However, most students seemed to strug-
gle with this, often finding 4 phases by not recognizing that the equation
setting k0 is only meaningful in an ordered phases, since otherwise the sad-
dle point equations are automatically satisfied. Students who did compute
the free energies for the most part mapped the phase diagram correctly,
though a significant minority made an error at this stage. (As noted, ow-
ing to the incomplete statement on the order of transitions into modulated
phases, full marks were given for any satisfactorily justified answer for
this part.) Part (c) was an application of the Gaussian approximation to
computing a scaling exponent. Very few students gave a satisfactory an-
swer here, since they failed to recognize that the scaling is modified at the
Lifshitz point; extracting the exponent is a matter of dimensional analysis
which is different at the Lifshitz point and away from it. Parts (d) and
(e) focused on the case of a real scalar field. Unlike the complex case, the
order parameter modulus fluctuates in space, necessitating an evaluation
of an integral over each unit cell of the order, as suggested by a hint and
the provision of the necessary integrals. (Failing to do the integral leaves
an explicit spatial dependence that is tricky to manage) Students seemed
to miss this interpretation, and so sensible answers to these two sections
were rare. It was apparent that many students were struggling under time
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pressure owing to difficulties with part (b). This led to a low overall score
for this question, around a third smaller than that expected, since it was
anticipated that parts (a) and (b) would be high scoring for the majority of
students.

Note: at least one student was confused by the statement that one should
determine the free energies as functions of α2, ρ2, ρ4 > 0 and α4 > 0,
taking the first inequality to apply to all the parameters rather than just
ρ4. This should have been clear from context of the problem (there would
be only a single phase if all the parameters are bigger than zero) and the
fact that inequalities were explicitly provided for α4 and ρ4 separately.
Students are reminded to carefully read the questions and to view the
problems holistically, in which case such errors of interpretation would
become evident.

Collisionless Plasma Physics

The standard of solutions returned by the candidates was generally good.
All candidates attempted all questions. The difficulty of the questions
appears to have been set at the correct level. A detailed report, question
by question, is given below.

Question 1.

In part (a), few candidates could provide a complete ordering argument to
obtain equations (3) and (4). Most candidates were able to follow the rea-
soning in part (b). In part (c), the candidates correctly used perpendicular
force balance to obtain the result (6). In part (d), most candidates failed
to notice that R(r, θ) should be expanded in the final magnetic field. Some
candidates were unable to findψ0, after failing to notice that dP/dψ0, rather
than dP/dr, was specified in the problem.

Question 2.

Parts (a) and (b) were answered well. Most candidates managed to sketch
the form of the magnetic field in part (c), but a few candidates struggled
with the qualitative and quantitative descriptions of the particle motion.
Part (d) was answered well by candidates that understood the method of
characteristics.

Question 3.

Part (a) was answered well by all candidates. Most candidates were able
to find the correct basis vectors in part (b). In part (c), the candidates
understood how to find the dispersion relation, valid for x , 0, although
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some made algebraic errors. Part (d) was answered well. In part (e), some
candidates were unable to find the expression for xc/L. All candidates
managed to demonstrate that waves cannot reflect for ky0 = 0 and Ωe � ω.
Finally, in part (f), few candidates could correctly identify the range of ky0

for which reflection occurs – the most common mistake was to neglect the
fact that ky0 is constrained by the X-mode dispersion relation at x = 0.

Groups and Representations

Overall, students performed very well on this paper and almost all of them
have taken in the main messages of the course.

Question 1: The main difficulty was, in fact, part a), as students struggled
to understand symmetric and anti-symmetric tensor products. Also part
e) caused occasional conceptual difficulty. Part b), c) and d) were done
confidently and correctly by almost all who attempted the question.

Question 2: While part a) and b) were, on the whole, done very well many
students struggled with part c) which asked to find the two irreducible
parts in a reducible representation explicitly. This often led to follow-on
difficulties in the remainder of the question.

Question 3: The first four parts were completed very well and problems
mostly arose in the last part e) when the result had to be applied to a
proposed G2 quark model.

Question 4: Part a) was done very well, but some students struggled to get
to the correct branching for some cases in part b) which led to follow-on
difficulties in part c). Few were able to apply to tensor transformation rules
from part a) to complete part d) convincingly.

Kinetic Theory

Q1 Some candidates omitted the arguments of functions for brevity, no-
tably in parts (b) and (e), and then confused themselves. Questions are
written in a “show that” style to allow candidates to attempt later parts of
a question from correct starting points. A full solution to a “show that”
question should establish that the candidate could have derived the result
without having been given it to aim for. A prose plausibility argument for
the given result is not sufficient.

Part (a) was done well by all candidates.

Part (b) was found surprisingly difficult. φ(|xi − x j|) depends on both xi

and x j. Taking the time derivative gives two equal contributions to dE/dt
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whose sum can be written as −(1/N)
∑N

i=1 |ẋi|
2.

Parts (c) and (d) were mostly done well.

Part (e) was found most challenging, and not all candidates attempted it.
The easiest approach begins with

∂tρ
(∞)
s =

∂
∂t

 s∏
k=1

ρ(∞)
1 (xk, t)

 =

s∑
j=1

{
∂
∂t
ρ(∞)

1 (x j, t)
} s∏

k=1
k, j

ρ(∞)
1 (xk, t),

then uses the evolution equation for ∂tρ
(∞)
1 (x j, t) with the second particle in

the integral chosen to be particle s+1 using the particle exchange symmetry.

Q2 Performance on Question 2 was mediocre. Everyone did the standard
bit — part (a) — more or less perfectly, competently reproducing the stan-
dard calculations for the hydro beam instabilities. In part (b), while most
students figured out that the first and the third term in the dispersion re-
lation would be the largest (and hence kue ∼ ωpe), no one realised that it is
from the balance of the second term and the (small) difference between the
first and the third that the value of p would actually be obtained

Part (c) should have been easy regardless of success in part (b), but mostly
wasn’t. In part (d), they all knew the instability was hydrodynamic but
not all seemed to understand why or what that actually meant.

Q3

(a) There was some confusion which led some candidates to add a kinetic
term in the discrete Hamiltonian. Here, as hinted in the definition of
E, one simply has Hd(w)=Uext(w)+

∫
dw′U(w,w′)F(w′). Fortunately, this

confusion did not prevent all the candidates from correctly deriving the
Klimontovich equation.

(b) This question was only addressed by a small number of candidates. It
did not present any particular difficulty, and the candidates correctly used
the symmetry relation U(w,w′)=U(w′,w).

(c) This question did not cause any difficulty.

(d) Many candidates forgot to mention that ∂F0/∂t=−
〈[
δF, δH

]〉
, i.e. this

term is second-order in the perturbations, so that it can be neglected in the
system’s first-order evolution equation.

(e) The manipulations of equations were done correctly, except, in some
cases, for the explicit mention that having Im(ω)>0 large enough ensures
the appropriate vanishing of eiωtδF(t) for t→+∞.
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(f) This question has been adequately solved by all candidates.

(g) This question was only tackled by a small number of candidates.

Quantum Field Theory

Question 1: This question was mostly very well done. Candidates knew
the Feynman rules and were able to apply them. The very last part on
threshold behaviour produced quite a range of sensible comments but
few candidates realised the implication that the width should vanish at
M = 3m.

Question 2: This was the question candidates found hardest. Some could
not use completeness of the spinor basis and failing to keep good account of
the sign of three-momenta caused trouble in the last part. Few candidates
recognised the canonical conjugate momentum to ψ.

Question 3: This question was well done on the whole. Some candidates
did the question in four dimensions rather than three. Quite a few candi-
dates got distracted with two vertex diagrams that only generate a mass
correction (not asked for in the question).

Quantum Matter

This was a harder exam than average: mainly due to the last two parts of
the first question, which involved some physical interpretation rather than
calculations. Students found this difficult.

Q1.

(a) and (b) were done almost perfectly by almost everyone. (c) was sup-
posed to be fairly easy, but in fact few people got it entirely correct. (d) and
(e) which were relatively independendent of the earlier parts were meant
to test physical understanding rather than calculation. These proved very
challenging. Very few realized that the penetration length is crucial in
(d). For part (e), I expected this part to be difficult, and it was. The point
here was that Landau’s argument is really asking about whether a moving
system can give energy to the walls of the system or obstacles – whereas
the galilean boost shown allows no such obstacles.

Q2.

This question was more straightforward, with one perfect score and several
near perfect scores. The first two pieces were done almost perfectly by
everyone. The third part was the main calculational part of the question.
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While there were a wide range of minor errors and other confusions, a
good fraction of the students basically went in the right direction.

Radiative Processes and High Energy Astrophysics

Q1 (Radiative Processes)

A: Generally well answered. A few lost marks for not noting that the
recombination lines result when the recombined electrons transition to
lower bound states; instead saying that recombination lines result upon
recombination (these are continuum photons).

B: Very well answered.

C: Generally well answered. The odd dropped mark for omitting the
fator of 2.2 to convert from Ṅγ to ṄHα and some dropped marks for not
recognising that the Brackett series lines are less affected by dust than the
Hα line.

D: The original question included the incorrect equation:

Θ ≡
nHαr(2πr∗D)2hc

2.2〈σ〉FHαλHα

.

The correct equation is

Θ ≡
nH αr r2

∗
hc

8.8 〈σ〉 FHα λHα D2 .

All candidates attempted to derive the correct equation, and so saw the cor-
rection early enough. Most candidates recognised that the correct starting
point is

ionization rate per unit volume = recombination rate per unit volume

nHII

∫
∞

0
4πσν

Iν(r)
hν

dν = nHII(r)ne(r)αr.

Candidates with lower marks from this part did not recognise that this
was the starting point. The very best answers recalled that I∗ν = F∗ν/π =
L∗ν/(π 4π r2

∗
). It is easy to introduce errors by losing a factor of 4 and/or

using rin instead of r∗.

E: The very best answers recognised that Iν(r) = e−τνI∗ν ≈ (1 − τν)I∗ν, where
the second step is a Taylor expansion around τν = 0. Some answers instead
went straight to the second step. Candidates that scored poorly on this
question did not recognise the starting point of part D.
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Q2 (High Energy Astrophysics)

A: Generally well answered, especially the derivation.

B-C: Very well answered.

D: Very well answered, except some candidates did not remember the
difference between the number density of electrons, dNe/dE ∝ E−k, and the
number density of photons, dNγ/dν ∝ ν−α, where α = (k − 1)/2 for optically
thin synchrotron radiation.

E: Generally well answered. Candidates that did not score as well did not
realise that the maximum distance occurs when the jets start out at the
speed of light and then decelerates.

Supersymmetry and Supergravity

Question 1: Overall, the students performed well on part (a). The first
bullet point was bookwork and all students gave good answers. The
second bullet point presented some technical difficulties for some of the
students, due to manipulations of spinor indices and related minus signs.
Part (b) was bookwork and all students performed well. Part (c) was more
challenging, as it was a variation on material discussed in the lectures.
Roughly half of the students scored maximal or next-to-maximal points,
with the other half attempting the problem and collecting a few points.

Question 2: Parts (a) and (b) were bookwork and everyone performed
well. Most students got some points on part (c), even though only a few
were able to get the full computation exactly right. Part (d) was a variation
of examples discussed during class. Roughly half of the students got
next-to-maximal points, while the others were able to collect a few marks.

C3.3: Differentiable Manifolds

Question 1. Part (a) was mainly done well, though common errors were
not mentioning that functions in the partition of unity subordinate to an
atlas have support contained in charts in the atlas, and not commenting
on the locally finite condition. Whilst many students obtained the right
answers for (b), the required justifications were often lacking. Most stu-
dents found part (c) challenging, only able to do the very first part, and
otherwise unable to justify their answers fully for the other parts of the
question. This was the most popular question and produced a wide range
of marks from high to low.
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Question 2. Part (a) was standard bookwork and typically answered
correctly. Part (b)(i) was usually done well, though the most common
difficulty was in showing that the map used to define M as its zero set had 0
as a regular value. Students typically struggled with part (b)(ii), usually not
attempting it and not finding the required map g (though they realised it
must be related to the determinant). Parts (c) and (d)(i) were again standard
bookwork and usually answered correctly. Part (d)(ii) proved challenging
for most students, with most getting stuck in length computations and not
computing the preimage of the regular value correctly. There was a wide
spread of marks for this question but there were no high marks (above 20).

Question 3. Part (a) was bookwork, but many students lost a mark by not
mentioning the nondegeneracy of the canonical 2-form on the cotangent
bundle in (a)(i). Part (b)(i) was usually done well, using a variety of
methods. Part (b)(ii) proved to be challenging for the students, though
most understood to use the known constants of the motion (such as the
Hamiltonian), and several realised that it was useful to use Hamilton’s
equations. Most students had the right idea for both parts of (c), but quite
often made computational errors. This was the least popular question and
there was a wide range of marks from high to low.

C3.4: Algebraic Geometry

All three questions elicited some very good answers, as well as a smaller
number of weaker ones.

Question 1: This question was attempted by the overwhelming majority
of candidates. Some students failed to see in (c) why the ideal is not prime,
but most solutions cleared that hurdle. In (d), most students found the right
form of the map, but several attempts at proving the surjectivity of this map
were imprecise or incomplete, in particular including some handwaving
around ”choice of roots of unity”. Some students proposed formulas for
an inverse that included cube and other roots; such maps are clearly not
regular in the sense the course defined regular maps. In (e), some students
failed to address irreducibility; the easy argument that (d) implies that C2

is a curve (so dim 1) was often missed. As for (f), most students failed to
find the straightforward proof that the obvious 2-generator ideal is in fact
prime.

Question 2: This question was attempted by about half the candidates. In
(b), many students failed to notice that by differentiating xtBx, we get that
the singular locus is simply the projectivisation of kerB. Lots of essentially
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complete solutions were given to (c), either by direct calculation, or by
recalling (in full) the Segre embedding. Part (d) was also done well by
many students, either by explicitly factoring the equation or by writing
down the equations of some line and solving equations for the coefficients.
A comment that stated simply that ”this is a famous theorem about cubic
surfaces” only received fractional credit, as this theorem was not part of
the course.

Question 3: This question was also attempted by about half the candidates.
Some students failed to note in (a) that essential aspects of a resolution of
singularities are that it should be a surjective and a morphism. In (b), some
students failed to address why the cover they propose is by affine varieties.
(d) was generally done very well. In (e), some computational mistakes or
failure to look at all affine charts suggested to some students that point
blowup might actually lead to a resolution. (f) was generally done well
unless time pressure prevented students from addressing this question.

C5.6: Applied Complex Variables

Q1: This question was attempted by most candidates and was generally
done well, apart from part (d) which required more independent thought.
For Part (a), a few candidates were confused by interior and exterior an-
gles, and in a number of cases the multiplicative constant C in the mapping
was left too general (or was assumed to be real). Parts (b) and (c) were
managed fine by most candidates. For part (d), only a few gave a reason-
ably explanation of why the given quantity represents the film thickness
at C. Most candidates realised they needed to do some sort of integral of
the equations from (c), but many were confused by what limits to take.

Q2: This question was attempted by few candidates, perhaps reflecting
the fact it looked most different from previous exam questions, although
it followed a similar recipe. Parts (a) and (c) were both done well. The
conversion between the limits as Y → ±∞ and those as z → ∞ and z → 0
caused some difficulty in (b), and no-one really got very far with part (d).
In particular, all but one attempt wrongly assumed that H(z) needed to be
zero.

Q3: This question was done very well on the whole, especially parts (a) and
(b). For part (c) a common slip was to assume that c > 0 without comment,
and in some cases the ordering of the logic to explain why the expression
is constant was not quite right. For part (d), quite a number of candidates
obtained the correct result, although the algebraic manipulations required
a lot of reverse-engineering in some cases. The most common difficulties
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were errors in computing the residues, and having the wrong orientation
of the inversion contour.

C6.4: Finite Element Methods for Partial Differential Equations

Q1: This question revealed a good spread of abilities across those who
attempted it. Q1(a)(i) was answered correctly by every candidate. Some
candidates claimed in Q1(a)(ii) that the property was immediate, neglect-
ing to observe that v ∈ Pk+1(K). Q1(a)(iii) was answered correctly by every
candidate. Q1(b)(i) was mostly answered well, with occasional slips in the
signs of the integration by parts formula for curl. A few candidates erro-
neously applied the permutation rule for the scalar triple product directly
to the volume integrand, rather than to the term arising via integration
by parts. Q1(b)(ii) was mostly answered well. In Q1(b)(iii), a few can-
didates tried to modify the weak form they had already derived rather
than starting from the strong form of the problem. While this approach
can work, the handling of the boundary terms arising from integration
by parts is delicate. A small number of candidates did not realise that
u ∈ H(curl,Ω) does not imply that ∇ · u ∈ L2(Ω), and failed to integrate by
parts appropriately to shift the differential operator onto the scalar-valued
test function.

Q2: This question was very popular, with every candidate attempting
it. Q2(a) was generally answered very well, as it was quite similar to
problems seen on problem sheets. Q2(b) served useful in revealing a
candidate’s level of understanding. In Q2(c)(i), some candidates proposed
a nonsymmetric but correct A, instead of the (obvious) symmetric A that I
had in mind. These candidates were awarded full marks, but generally ran
into difficulties in handling the boundary conditions in Q2(c)(ii). Q2(c)(iii)
was generally answered well, with most candidates giving sharp constants
with the correct parametric dependence on β. Full marks were awarded for
correct arguments leading to nonsharp bounds, so long as the dependence
on β (or not) was correct. In Q2(c)(iv), few candidates used the sharper
√

C/α bound available for symmetric problems, with several candidates
erroneously claiming that the problem was not symmetric. The first part of
Q2(c)(v) was generally answered well, but the latter part of characterising
the kernel was only answered correctly by a handful of candidates.

Q3: (a)(i) was generally answered poorly, with few candidates getting the
boundary integrals arising from integration by parts correct, and several
including a dependence on the test function v in the strong statement of the
boundary condition h(u, p,n) = 0. Q3(a)(ii) was also answered poorly, with
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few candidates hitting the nail on the head: the boundary condition de-
pends on the value of the pressure, so taking a solution (u, p) and modifying
it to u, p + c) for c ∈ R no longer satisfies the boundary condition. Q3(a)(iii)
was generally answered well, but several candidates ran out of steam in
the calculations and claimed the result without showing it. Q3(a)(iv) was
related to Q3(a)(i) and was marked in a manner so as not to penalise can-
didates for the same mistake twice. Q3(b)(i) was mostly answered well.
Q3(b)(ii) was answered excellently, with most of the candidates who at-
tempted it giving very clear arguments. Q3(b)(iii) appears to have been
much more challenging, with only the best students answering it correctly.
Several of these offered a beautiful argument based on applying Babuška’s
theorem.

C3.2 Geometric Group Theory

Question 1 was attempted by all candidates, with good results on the
whole. Most of the mistakes were in part c, where a number of attempts
to change the presentations were made without any kind of method, and
this turned out to be either unsuccessful or time consuming.

Question 2 was likewise popular. In the second part of (a) a number of can-
didates tried to use properties of universalities of amalgamated products,
instead of an approach using actions on Bass-Serre trees. Surprisingly, the
last question had the least number of successful attempts.

Question 3 was attempted by few candidates ,with only about a quarter of
the questions receiving correct answers. This may be as usual related to
the fact that this question covered the last part of the course.

C7.5: General Relativity I

Question 1 was relatively popular, with a large majority of students at-
tempting this question. The first part of the question and some portion of
the middle of the question was successfully completed by many students,
but there were a significant number of errors of understanding. It was
fairly common, for example, to believe that a stationary observer follows
a geodesic. Many students were able to obtain an expression for the time
difference between the two observers, however in a large number of cases
this expression included constants of motion which could (and should)
have been eliminated. There were several ways to do this: the simplest
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was to use the stability of the orbit as in the lecture notes, but this was
missed by a majority of students. Consequently they were unable to finish
the question.

Question 2 was the most popular question, and part (a) was successfully
completed by most students. Mistakes in part (b) were more common,
with some students unable to correctly vary the action. Even fewer stu-
dents succeeded in part (c): most students did not begin by finding the
conserved quantities given by the Lagrangian, and many students mis-
takenly believed that the particle moves on a geodesic, despite deriving
the force in part (b). Many students were more successful with the tensor
algebra bit of part (d), although the majority of students did not realise
that the energy-momentum tensor they had derived was anisotropic, and
since the spacetime is isotropic this requires some extra matter.

Question 3 was the least popular question. Part (a) was done successfully
by the majority of students, and a good number of students did well in
part (b) too, although some struggled with the tensor algebra. Many also
struggled with the tensor algebra in part (c). In part (d), no student gave
a satisfactory argument for σ2

≥ 0, although some did notice that such an
argument was needed. The interpretation of the result in part (e) was also
mistaken in a large number of solutions.

C7.6: General Relativity II

Question 1: The first question was attempted by nearly all students. The
tensor manipulations in part a) did not prove difficult and also part b) was
executed nearly flawlessly. However, part c) was already more difficult
and although most students scored a good number of points, only a few
carried it out more or less correctly. Question d) i) was the most difficult
part and was not answered correctly by any student. Part ii), however,
was again easier with a few students scoring full marks and most students
at least some.

Question 2: This question was the least popular with only a few students
attempting it. Part a) was carried out well by everyone and in part b)
everyone showed the equivalence of the gravitational perturbations under
the gauge transformation, however, only half the students showed that in
general the new perturbation is not in wave gauge. Part c) and d) proved
difficult and no student produced a complete answer here.

Question 3: This question was again attempted by nearly all students. Part
a) was executed flawlessly by nearly everyone. Part b) was solved very well
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by most students and various computational routes to the correct solution
were presented. The last part was the most difficult, and while most
students gained a few points here, no one delivered a complete solution.
In particular students struggled with keeping track of the coordinate ranges
and with constructing the maximal analytic extension.

C7.4: Introduction to Quantum Information

Question 1. It was the least popular question. Some students struggled
with visualising mixed states in terms of Bloch vectors and failed to draw
the required mixture of Z eigenstates in (a) and the mixture of Pauli states
in (b). Those who failed to sketch the octahedron in part (b) had difficul-
ties with completing part (e), which is related to (b). Only few students
attempted parts (e) and (f). Those who attempted part (f) showed no dif-
ficulty in stepping through the quantum circuit. However, many students
simply stated that the T gate is needed for universality without backing it
up with any arguments.

Question 2. It was by far the most popular, with nearly all students having
it used as a successfully attempted question. In general, it was very well
answered, and students scored well. Part (a) was bookwork; part (b) was
done in a few different ways, but almost always successfully; part (c) was
where most students dropped a few marks, having calculated the required
identity successfully, but then incorrectly assuming that they could simply
square this to obtain the probability; part (d) was well answered, but many
students simply listed four probabilities without even mentioning how
they related to the actual question asked; part (e) was usually answered
correctly, and many even mentioned how the maximally mixed state attains
the maximal probability for this test; part (f) was usually either answered
entirely correctly, or entirely incorrectly, with some students simply stating
that the probability obtained in part (d) was independent of the random
number generator.

Question 3. The first three parts of this question (a, b and c) were, in general,
well answered. Students knew how to take partial traces, construct the
Choi matrix, and how to check positivity and complete positivity of linear
maps. Some students did not realise that in part (b) the reduced density
operators must have the same spectrum. The last two parts (d and e) —
which required visualising the action of the depolarising map on the Bloch
vector — turned out to be the most challenging; students tried different
approaches but only two of them (out of 27) got it right.
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C3.5: Lie Groups

Candidates found this a hard paper, though there were some good answers,
especially to Question 1.

All candidates attempted Question 1. The part which caused most diffi-
culty was 1(a)(iii): very few candidates were able to describe the irreducible
representations of O(2) correctly. Many forgot to include the hypothesis
that G should be connected in the statement of the Maximal Torus Theo-
rem required in 1(b), though it appeared that some realised the relevance
of connectedness when answering 1(d) and then corrected their answers
to 1(b).

The amount of unseen material in Question 2 was perhaps off-putting to
candidates. There were some nice answers to 2(a) and 2(b) but almost no
attempts at (c), possibly from lack of time.

More candidates attempted Question 3. On the whole 3(a) and 3(c) were
well done, although there were not many completely satisfactory descrip-
tions of the integrand in the Weyl integration formula. 3(b) was found
much harder, especially 3(b)(iii), even though there was a similar calcula-
tion in the lecture notes.

C5.5 Perturbation Methods

Q1

Overall the question was answered well. The first part of the question
presented little difficulty in general though a small number of candidates
stopped at the first iteration, thus failing to confirm that the first iterate was
indeed the first term in an asymptotic expansion. In the second part there
were numerous good solutions though justifying that the infinite number
of corrections, even when summed, were still o(1/xm) distinguished the
best solutions.

Q2

This was the least popular question, though it was a generalisation of a
very similar problem in the lecture notes. The latter entails that students
trying this question as part of revision in future years will find it more
difficult than intended if the lectures no longer consider this example. The
fundamental difference with the lectured example was the exp(xu) term,
which could be expanded via

exp(xu) = exp(xu0 + εxu1 + . . .)
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after which the structure of the question was similar, though the complex-
ities of dealing with the f (x, x/ε) term, which had no analogue in lectures,
differentiated the best candidates.

Q3

This was the most popular question and it was answered well in general.
Most solutions picking up all or most of marks controlled the complexity
by noting that using the expression in part (a), together with the equations
governing ϕ and A0 in part (b), gave an extensive simplification for

d3yW

dx3 + x2yW.

22



E. Comments on performance of identifiable individuals

Removed from public version.

F. Names of members of the Board of Examiners

Examiners:

Prof Artur Ekert (Mathematical Institute, University Of Oxford)
Prof Lionel Mason (Mathematical Institute, University Of Oxford)
Dr Dmitri Pushkin (Department of Mathematics, University of York)
Prof Alex Schekochihin (Department of Physics, University of Oxford;
Chair)
Dr David Skinner (Department of Applied Mathematics and Theoretical
Physics, University of Cambridge)
Prof Subir Sarkar (Department of Physics, University of Oxford)

Assessors:
Dr Vinayak Abrol
Dr Prateek Agrawal
Prof Fernando Alday
Prof Michael Barnes
Prof Christopher Beem
Dr Connor Behan
Prof James Binney
Dr Sounak Biswas
Prof Philip Candelas
Prof Fabrizio Caola
Prof Coralia Cartis
Prof John Chalker
Dr Cyril Closset
Prof Joseph Conlon
Dr Andrei Constantin
Prof Amanda Cooper-Sarkar
Prof Andrew Dancer
Dr Paul Dellar
Dr Henrik Dreyer
Prof Artur Ekert
Prof Fabian Essler
Prof Patrick Farrell

23



Prof Pedro Ferreira
Prof Andrew Fowler
Prof Eamonn Gaffney
Dr Stefano Gogioso
Prof Ramin Golestanian
Prof Alain Goreily
Dr Michael Hardman
Prof Lucian Harland-Lang
Prof Ian Hewitt
Dr Yichen Hu
Dr Joseph Keir
Dr Panayotis Kevrekidis
Prof Frances Kirwan
Dr Aleks Kissinger
Prof Renaud Lambiotte
Prof Jason Lotay
Prof Ard Louis
Prof Andre Lukas
Dr John Magorrian
Prof Lionel Mason
Prof Lance Miller
Prof Andreas Muench
Dr Adam Nahum
Dr Erik Panzer
Prof Sid Parameswaran
Prof Ray Pierrehumbert
Dr Ebrahim Patel
Dr Sthitadhi Roy
Prof Gavin Salam
Dr Jan Sbierski
Prof Alexander Schekochihin
Prof Steven Simon
Prof Andrew Steane
Prof Balasz Szendroi
Prof Jared Tanner
Prof Andrew Wathen
Prof Andrew Wells
Prof John Wheater
Prof Julia Yeomans

24


