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Part I

A. STATISTICS

• Numbers and percentages in each class.

See Table 1.

Numbers Percentages %
2019 (2018) (2017) (2016) 2019 (2018) (2017) (2016)

Distinction 40 (25) (31) (18) 76 (60) (76) (86)
Merit 6 (n/a) (n/a) (n/a) 11 (n/a) (n/a) (n/a)
Pass 6 (17) (10) (3) 11 (41) (24) (14)
Fail 1 (0) (0) (0) 2 (0) (0) (0)
Total 53 (42) (41) (21) 100 (100) (100) (100)

Table 1: Numbers and percentages in each class

• Numbers of vivas and effects of vivas on classes of result.
No vivas were held.

• Marking of scripts.
All dissertations and mini-projects were double-marked, after which
the two markers consulted in order to agree a mark between them.

All written examinations and take-home exams were single-marked
according to carefully checked model solutions and a pre-defined
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marking scheme which was closely adhered to. A comprehensive
independent checking procedure is also followed.

B. New examining methods and procedures

The Merit classification was introduced by the University for all students
whose Master’s course began in October 2019. Therefore, students who
commenced their studies on the MSc in Mathematical and Theoretical
Physics or the Master of Mathematical and Theoretical Physics (MMath-
Phys) in 2019 were awarded a Distinction, Merit, Pass or Fail.

C. Changes in examining methods and procedures currently
under discussion or contemplated for the future

None.

D. Notice of examination conventions for candidates

Notices to candidates were sent on: 9 October 2018 (first notice), 13 Novem-
ber 2018 (second notice), 14 February 2019 (third notice) and the 13 May
2019 (final notice).

The examination conventions for 2018-2019 are on-line at
http://mmathphys.physics.ox.ac.uk/students.
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Part II

A. General Comments on the Examination

Table 2 gives the rank of candidates and the number and percentage of
candidates attaining this or a greater (weighted) average USM.

Table 2: Rank and percentage of candidates with this or greater overall USMs
Av USM Rank Candidates with %

this USM and above
93 1 1 2
91 2 2 4
90 3 4 6
89 4 5 8
88 5 6 9
86 6 7 11
85 7 9 13
83 9 12 17
82 12 14 23
80 14 16 26
79 16 19 30
78 19 21 36
76 21 22 40
75 22 26 42
74 26 28 49
73 28 31 53
72 31 35 58
71 35 32 66
70 42 42 79
69 43 43 81
68 44 44 83
67 46 46 87
66 47 47 89
61 48 48 91
60 50 50 94
59 51 51 96
58 52 52 98
31 53 53 100

B. Equality and Diversity issues and breakdown of the re-
sults by gender

Removed from public version

Oral Presentation All candidates passed the requirement to give an oral
presentation on a specialist topic.
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C. Detailed numbers on candidates’ performance in each
part of the examination

The number of candidates taking each paper is shown in Table 3 and in the
Average USM per Formal Assessment graph below. In accordance with
University guidelines, statistics are not given for papers where the number
of candidates was five or fewer.

Table 3: Numbers taking each paper
Paper Number of Avg StDev

Candidates USM USM
Advanced Fluid Dynamics - - -
Advanced Philosophy of Physics - - -
Advanced QFT 31 68 22
Advanced Quantum Theory 17 67 10
Algebraic Geometry - - -
Applied Complex Variables 11 68 21
Collisional Plasma Physics - - -
Collisionless Plasma Physics - - -
Differentiable Manifolds 6 62 16
Disc Accretion in Astrophysics - - -
Dissertation (single unit) 15 77 6
Dissertation (double unit) 8 83 10
Galactic and Planetary Dynamics 7 72 12
General Relativity I 24 67 12
General Relativity II 24 68 11
Groups and Representations 40 78 12
Introduction to Quantum Information 26 81 12
Kinetic Theory 12 63 5
Networks 17 72 7
Numerical Linear Algebra 8 69 9
Perturbation Methods 10 71 8
Quantum Field Theory 49 71 14
Quantum Matter 13 73 7
Radiative Processes and High Eng. Astro. - - -
String Theory I 19 72 19
Supersymmetry and Supergravity 12 72 19
Theories of Deep Learning - - -
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The number of candidates taking each homework completion course is
shown in Table 4. In accordance with University guidelines, statistics are
not given for papers where the number of candidates was five or fewer.

Table 4: Numbers taking each homework completion course
Paper Number of Percentage

Candidates completing course
Advanced Fluid Dynamics - -

Advanced Quantum Field Theory - -
Astroparticle Physics 8 100
Collisionless Plasma Physics - -
Conformal Field Theory 12 100
Cosmology 13 100
Disc Accretion in Astrophysics - -
Galactic and Planetary Dynamics - -
Group and Representations 40 100
Kinetic Theory - -
Nonequilibrium Statistical Physics 14 93
Quantum Field Theory in Curved Space Time 12 83
Quantum Matter - -
Renormalisation Group 15 100
Soft Matter Physics 9 100
String Theory II - -
Supersymmetry and Supergravity - -
Symbolic, Numerical and Graphical Scientific Programming 8 100
The Standard Model and Beyond I 9 100
The Standard Model and Beyond II - -
Topics in Soft and Active Matter Physics - -
Topics in Quantum Condensed Matter Physics - -
Topological Quantum Theory 30 100

6



D. Assessors’ comments on sections and on individual ques-
tions

Advanced Fluid Dynamics

Question 1: Part (a), which was bookwork, was done well by most, al-
though there was a lack of clarity in some minds regarding the precise
mathematical assumptions (ordering of fields with β and Mach number)
behind the iMHD equations.

Part (b) was done well by most.

Part (c) did not present much difficulty either, although there was some
confusion as to whether ∂iMi j represented magnetic pressure or tension.

Part (d) was elementary, but some nevertheless managed to fail to take the
trace of δi j correctly.

Part (e), being straight linear theory, should have been easy, but defeated
all. Students could not get to the dispersion relation and none realised
that this task might be simplified by introducing the displacement vector
(despite this having been covered in the lectures and homework).

Part (d) None noted that while magnetic fields could reverse direction on
small scales (leading to dissipation), polymers strands did not have that
problem.

Question 2:

Almost all candidates calculated the force by integrating σ · n over the
surface of the sphere, as in lectures. The “hence” in the question was
thus relaxed to “hence, or otherwise” when marking. Candidates were
expected to use ∇ · σ = 0 and the divergence theorem to show that the
integral of σ · n over the surface of the sphere equals the integral of σ · n
over any larger enclosing surface. By considering a sphere of large radius
one can use the large-r approximation of the velocity field to simplify the
calculation. by dropping the (r−3) terms. One ends up needing to integrate
xix j over a unit sphere, which is most easily done by observing that the
integral must be a scalar multiple of δi j, by isotropy, then taking the trace
to find the scalar.

Almost all candidates then tried to address (b) using the reciprocal theorem,
which was correctly stated, instead of recognising the large-r expansion of
the velocity field they were expected to have used in (a). They should also
have eliminated U in favour of F using F = −6πµaU.
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Part (c) was done best. However, many candidates simply asserted that
u′1 +u′2 = 0, or invoked an unspecified symmetry principle, to show that the
centre of the bead-spring pair moves with the velocity of the surrounding
fluid. They should have calculated u′1 and u′2 by considering the spring
force on each sphere. Various factors of 2 were lost by trying to put
the spring force, sometimes called an external force, straight into the R
equation.

Not all candidates identified ζ as the Stokes drag coefficient 6πµa. For the
last part, candidates were just expected to note that ζ/(8πµR) = 3a/4R.

Advanced Quantum Field Theory

All questions were to be attempted. The standard of answers was good
in general, and students did not struggle with one question in particular;
the average marks for each of the questions were rather similar. Further
comments follow below, focussing on elements that some students had
issues with.

Question 1) a) i) was basic bookwork, and the majority of students got this
right. There were many elements to a) ii) to get right (colour factors, minus
sign for ghost loop, knowing when/how to apply PV reduction, getting the
algebra right for the loop calculation), and most students did not got every
part of this correct. The majority of the students followed the hint and got
the marks for a) iii), and most students identified the correct method for a)
iv), even if the stated answer contained an error carried forward from (ii).
Most students had no issues with b), which was entirely bookwork.

Question 2) Most students had no issue with a) i) and ii). Many students
struggled to prove b) i) in real time, or got lost in the algebra. Marks were
lost in b) ii) and iii) by some students due to apparent lack of familiarity
with Feynman rules for QED, and the spinor sum procedure. Those who
were familiar generally had no major issues. The relative minus sign was
often missed between the two diagrams in b) iii), and in some cases the
students failed to identify the correct form of the trace for the cross term,
and its relation to b) i).

Question 3) a) Was bookwork and was generally answered to a high stan-
dard. Some students introduced sign errors when moving to Fourier space
or did not quite get the final inversion right to produce the propagator. For
b) i) quite a few students failed to identify the correct SO(N2) symmetry
for the Hermitian case. ii) and iii) were answered without any major com-
mon issues. Where marks were dropped for iv), this was due either to
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students not identifying the correct method for substituting the expression
for Φ into the potential and/or not manipulating the corresponding traces
correctly.

Advanced Quantum Theory

Q1: leniency was given in part (c) in terms of assumptions made on the
various parameters, and in 1(d) for alternative ways to argue for the order
of the different transitions.

Q2: a full answer for part (d) would note that for ferromagnets the Bo-
goliubov vacuum |0〉 is a ground state, but so is [b†(~k = 0)]N

|0〉 for N ≤ 2S
(not on the original solutions but on the amended ones). While full marks
were given for the former answer, some candidates gave rather obscure
explanations involving some version of the latter; only partial marks were
given for such answers unless the explanation was very clear.

Q3: Leniency was shown in part (b) as long as some effort was made to
justify the arguments via integration by parts — but full credit was only
given if there was a clear explanation for why the boundary condition
allowed the neglect of boundary terms when integrating by parts (the
‘and hence’ in the question was a clear hint that both the definition of the
Green’s function and the boundary conditions it satisfies were necessary
to successfully rewrite the generating functional as required.) In Part (f)
there is an additional disconnected double tadpole that should be accepted
as an allowed solution; any 2 of the 3 new diagrams were accepted for full
marks.

Collisionless Plasma Physics

There were no issues with the exam. The students did not need any
clarifications.

Question 1. The students were able to solve parts (a) and (b). In part
(c)(i), all the students missed the existence of particles that cannot reach
the origin. Some students thought, incorrectly, that the particle trajectories
were “unstable”. None of the students were able to find the solution of part
(d) even though a very similar question is asked in the first homework.

Question 2. Students were able to solve parts (a)-(d) and part (f), and
struggled with the algebra of part (e) (several students failed to neglect
k‖ in one of the terms). Students found parts (g) and (i) harder than
expected. In part (h), students were not careful and they did not consider
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the possibility of k‖ being small.

Question 3. Students solved part (a) and part (b), although they spent
more time on part (b) than expected. Part (c) and part (d) were partially
solved by all the students, but in both parts, the students did not seem
to understand important aspects such as the reason why ω/ωdi must be
positive for instability.

Collisional Plasma Physics

The exam had two typos:

• In part (a) of problem 3, ∂2uiz/∂z2 should have been ∂2uiz/∂x2. The
students realized that it was a typo, and it was corrected during the
exam.

• In part (d) of problem 2, the collision operatorC[ge] should have been
C(`)

ee [ge] +Lei[ge]. Some of the student’s mistakes are not attributable
to the typo, but others are. I awarded points to the student to correct
for the typo.

The rest of the question went as follows:

• Problem 1. All the students did well in this problem in general.
There were some errors in the solutions to the different differential
equations, and the students did not attempt to discuss the physical
meaning of the results at the end of parts (d) and (e).

• Problem 2. Students who attempted this problem, did well in it
except for part (d).

• Problem 3. Parts (a) and (b) of this problem were solved by all the
students. Part (c) was only partially answered by some students
because they failed to see that the gyroviscosity contributed a force
in the x-direction.

Groups and Representations

Q1: On the whole, very well done. Some difficulties were encountered in
part D, mainly related to how the argument is made in a formally satisfac-
tory manner.
Q2: Attempted by 38 students, average mark 21.5. ted to algebraic errors
in the calculation.
Q3: Parts A, C and E were completed by most students who attempted
the question. A common problem in part B was that parts of the argument
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were left out (such as showing the map is subjective) Most students did
not understand how to tackle part D.
Q4: . Parts A, B and C were mostly done fairly completely, with difficul-
ties usually related to simple algebraic mistakes. Only about half of the
students managed to write down the representation in Part D.

Kinetic Theory

Question 1: Part (a) the only common error was asserting that the tem-
perature was the moment with respect to |v|2, rather than |v − u|2. A few
candidates mistakenly took “moments” with respect to u and θ, which are
functions of (x, t) only, to try to show the conservation properties.

Part (b) several candidates wrote explanations starting from (*) of why
one would be interested in the displayed integral, then just asserted the
required result. One gave only a perturbative result based on expanding
for f close to f (0).

Part (c) A few candidates left g(0) and h(0) as unevaluated integrals. The
most common error was not realising that θ depends on both g and h, or
not giving expressions for ρ, u, θ in terms of g and h at all.

Part (d) This caused more difficulty than expected. A few candidates
wrote down general results for the original 3D equation (*) for f rather
than starting from the system for g and h as instructed. Some who had
answered (a) correctly then forgot that θ was a moment with respect to
|v − u|2, not with respect to |v|2. While one can treat the contributions to
the energy density from g and h separately at first, it is not true that they
are separately conserved under collisions, as θ depends on both g and h.

Question 2: This entire question proved to be extremely challenging to
students.

Part (a) was pure bookwork on which everyone ought to have been able
to get full marks. Quite a few did, but those who did not, did not be-
cause they were unable to explain the logic behind the dispersion relation
ε(p, k) = 0, even if they might have vaguely understood it. There was also
some unnecessary explanation of irrelevant material memorised from the
lectures.

Part (b). While several students realised that the double Lorentzian had
its own poles, a surprising number did not. Of those who did realise, only
some performed the integral using the Cauchy residue theorem.

Part (c). Students were required to solve the biquadratic dispersion relation
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(formula (3), already given to them in the question so their ability to use it
would not be predicated on their ability to derive it in part (b))—and then
take the limit of ub/vp � 1 carefully.

Part (d). This required looking at the roots of (3) and their dependence on
k.

Part (c). Nobody got this far.

Question 3: Candidates scored highly on parts (a)-(c) but nobody got
more than half marks on part (d). Few candidates thought to write down
Hamilton’s eq of motion for J, and nobody thought to solve this by Laplace
transforms. Several candidates got a mark for part (e), but nobody made
the hoped-for comment about the connection with the conventional deriva-
tion of a Fokker-Planck equation by Taylor expanding the integrand of the
master equation.

The physics and maths of part (d) are simplicity itself by comparison with
some of what’s involved in parts (a) to (c). The problem was that parts
(a) - (c) involve reproducing the lecture notes, while part (d) requires
independent thinking. The candidates have worked diligently, but don’t
yet use their tools confidently.

The answers to part (a) suggested that the fundamental conceptual split
into a mean-field model and fluctuations about it wasn’t as clear in can-
didates’ minds as it should be. Several candidates seemed to think that
the evolution of the mean-field model hinged on evaporation, and implied
that the mean-field model had a Maxwellian velocity distribution.

Quantum Field Theory

Question 1: 1a: Many students did not find a simple way of deriving the
Hamiltonian, and ended up with mistakes that either made the next part
too simple or too complicated.
1b: For students that had incorrect expressions in 1a, they were almost
always deriving the wrong Equation of Motion. 1c: Several students did
not write down the commuatation relations and therefore did not get full
marks for this part.

Question 2: For question 2a, a lot of candidates had difficulty with the
vertex with derivatives and count them as a propagator as well.
2b And to calculate the scattering amplitude, a lot of candidates had diffi-
culties with the vertices with derivative as well. A standard answer expects
candidates to formulate Feynman rules with clean notation and thereafter
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calculate the amplitude of scattering accordingly.

Question 3: The first part of the this question did not cause any major
difficulty. All students seemed to have well in mind the properties of
gamma matrices, and then explicit chiral representation which took most of
them through parts A-D without any trouble. Part E cause more difficulties
however. Only roughly 1/2 of the students properly managed to write
the effect of a Lorentz transformation on the Dirac action. Out of these,
only a part could carry the calculation to the end to compute the Lorentz
transformation of chiral components.

Quantum Matter

This exam was a bit harder than it was in past years. Time seemed to be a
factor for some fraction of the students.

There was an error on the exam. In question 2c and 2d the information
should have been given that one should focus only on the case of N = 2
fermions. This error was spotted before the exam was given and an erratum
was distributed with the exam, so this should not have caused any trouble.
(For the record, this information was in an early version of the exam but
somehow got lost in the editing!)

Q1:

1a. All students could give a good definition of bose condensation, and
most could say a few words about how it differed from superfluidity.
Marks here were high.

1b. Most students could figure out that in this case one would only have
bose condensation in d > 4. Most marks were high here.

1c. Almost all students knew how to write a Hamiltonian in second quan-
tized form. However, a few lost factors of 2, or introduced spurious factors
of N,V, ~, 2. Marks again were high here.

1d. Most students had no trouble getting to the end result. However,
justifications of how one goes from field operators to complex scalar fields
were often not correct, or even entirely absent. Mixed results here.

1e. Here is where things got troublesome. Although this was almost
identical to a homework problem, very few students managed to derive
the excitation spectrum. Many low marks here.

1f. If one didn’t properly get the excitation spectrum, it was hard to do
the last point, although partial marks were awarded if anyone even wrote

13



down the landau criterion. Many low marks here (and unfortunately some
students who got stuck on 1e didn’t even try this part).

Q2.

2a. Almost all students had no trouble defining Hatree Fock

2b. ... and very little trouble explaining how Hartree-Fock works. Marks
on these two parts were high.

2c A two site model with two electrons seemed to stump quite a few
students. Even when we turned off the interaction – this reduces to a non-
interacting electron system, and still students got stuck. The interacting
(but no hopping) case was also puzzling to many – but again this should
have been fairly easy since the Hamiltonian is so simple. Marks were
mixed here. There were a few perfect scores on this part, but surprisingly
few.

2d. A few students did realize why nondegenerate ground state along with
spin symmetric Hamiltonian implies a spin singlet. A few got close to the
right argument for why the form of the f operators is as given (although
fewer actually got the argument perfect). A few did identify the form of
the ground state wavefuction, but only two correctly showed that HF is
never exact when t and U are both nonzero. I admit this last part of the
questions required some careful thought, and I expected few to get full
marks.

Radiative Processes and High Energy Astrophysics

The paper was taken by a small number of candidates and the answers
were of very high quality.

Particularly impressive was that all candidates answered the three-level
atom question perfectly. This topic has had an anecdotal reputation for
difficulty.

The answers to the question on particle acceleration showed a few occa-
sions where the candidates may not have has a full grasp of the discussion
in the lectures. In particular, the point was missed that the synchrotron
emission from protons is much weaker than from electrons in the same
magnetic field. Thus a jet with such ”hidden” protons would require
either super-Eddington accretion or would leave an abnormally massive
remnant black hole

14



Supersymmetry and Supergravity

The students did very well overall. The first two-third of questions (1) and
(2) were straightforward in principle, and everybody did well, except on
the question on the Lagrangian of SQCD.

Question 1(f) required checking SUSY algebra on superspace. One needed
to do the computation carefully not to ”forget” any terms. The challenging
part was the commutator [M,Q].

On question 1(h): the aim was to show that the 4d N = 4 and 4d N = 3
supermultiplets have the same field content. While the N = 4 multiplet
is a proper SUSY multiplet, with N = 3 we need to consider two proper
supermultiplets, CPT conjugate of each other, and this physicalN = 3 mul-
tiplet has then the same field content as theN = 4 one, as in the branching
rules given in the question. Most students had difficulty assigning the
U(1) ⊂ U(3)R R-charge. One needed to realize that Q has R-charge −1, and
that the U(1) R-charge of an helicity λ = 1 particle should be zero, because
it’s a real vector field and thus it cannot carry U(1) charge.

On question 2(f): Some students had some confusion on the meaning of
W. Recall that V = |∂φW|2 and only the derivative of W is then “physical,”
when it comes to looking for SUSY vacua. In particular, we need ∂φW = 0
in a SUSY vacuum, not W = 0.

C3.3: Differentiable Manifolds

Question 1: Attempted by most candidates. Part (c) had quite a lot of things
to cover and even candidates who knew what they were doing tended to
lose a few marks by missing things out (e.g. by not explaining why X is
Hausdorff, and second countable, which is why f-1(y) was supposed finite
or countable).

Part (d): The answer is that f is not a covering map (because of behaviour
over 1 in Y as 0 is not in X), but it is a local diffeomorphism. You could have
inferred the first from the question just on logical grounds: as (c) shows that
covering maps are local diffeomorphisms, if f were a covering map, then
there would be no point in the examiners also asking if f is a local diffeo-
morphism. But almost everyone said f is a covering map, and a surprising
number did not answer the question about local diffeomorphisms.

Question 2: (a),(b) were bookwork and done well. Candidates found the
first parts of (c),(d) difficult ((c)(i) needed an algebraic trick which most
did not spot, though many got part marks; in (d) few could explain that
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S1-invariant k-forms α on S1 x Y are d x ∧β + γ for β, γk − 1, k-forms on Y),
but for the second parts marks were obtained.

Question 3: The least popular question. For (a), some candidates did not
know the definition of orientations on manifolds in terms of orientations
on tangent spaces. Part (d) was difficult, and candidates who gave up and
did not attempt it received at most 13 marks.

C3.4: Algebraic Geometry

Almost all candidates chose exercise 1, after which as second option exer-
cise 3 was about twice as popular as exercise 2.

Exercise 1: (b) almost all candidates did not take the closures of the C-
sets, confusing the condition of being relatively closed in the qpv X with
being closed in the ambient projective space; (c) surjectivity seems to have
stumped many candidates even though it was clear due to there being a
quotient map on coordinate rings for subvarieties; (d) frequent mistake:
candidates used isomorphisms f,g to identify the qpvs V,W with affine
varieties A,B, and then took A intersect B, but A intersect B is in general
unrelated to V intersect W. Only very few candidates used the map (fxg)
applied to ((VxW) intersect (Diagonal)), and the fact that (fxg)(Diagonal)
is closed in AxB. Exercise 2: (a) candidates often wrote the definition
of tangent space for an affine variety in terms of a vanishing set, rather
than the intrinsic definition needed for a projective variety or a qpv; (d)
candidates sometimes did not see that one had to consider the Pluecker
embedding, in order to justify why the map was a morphism. Exercise 3: (a)
many candidates did not explain to which algebra g,h belong, when writing
f = g/h, in the definition of regular function; (b) a lot of confusion by
candidates caused by using the coordinates x j (with xi omitted), rather than
x j/xi on the affine charts Ui = (xi not zero). Candidates erroneously thought
that the function was therefore a polynomial in the x j on Ui independent
of xi, and therefore the polynomial was independent of all coordinates xi,
hence constant! (c) Some candidates stated what algebras are involved,
but without saying how the equivalence maps objects and morphisms; (d)
most candidates forgot that the Veronese embedding allows one to prove
that Pn(F) is affine (proved in the notes, and arises in a homework exercise)

C5.6: Applied Complex Variables

There were no errors on the paper. There was a slight possibility of confu-
sion on Q1. The question suggested integrating dz = dζ to show a result,
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when ζ had not been defined. I had realised this in advance of the paper
being sat, but decided against an announcement because (i) ζ has a stan-
dard definition used throughout lectures which most candidates would
just assume; this indeed turned out to be the case; (ii) any other definition
of ζ will also work;
(iii) an announcement would be difficult to phrase and likely to confuse
candidates.
In the event only one candidate raised a query as to the definition of ζ, and
I responded by saying he should decide what to take zeta to be. I would
expect the raw marks to be a good approximation to USM. There was a
good range of α and β marks for each question.

C6.1: Numerical Linear Algebra

This paper was largely well-attempted. It was surprising that several
candidates attempted all 3 questions despite the clear guidance in the
rubric.

Most candidates attempted question 1 on matrix factorizations, with a
range of scores. Few saw the point of the final part (f) where in particular
calculation of the smallest singular value was only correctly done by very
few. Too many candidates were happy to query that L1U1 = L2U2 implies
L1 = L2,U1 = U2 in part (c) without adequate proof.

Question 2 on stationary (simple) iteration was attempted by just over
half of the candidates with a range of scores including one full marks.
In the final part (c) too many candidates were too quick to introduce B−1

thereby making in almost impossible to apply simple diagonal dominance
arguments.

Question 3 on Krylov subspace methods was attempted by under half of
the candidates, but attracted (in general) higher marks. Again the final
part (c), though well done by some, caused difficulty.

C7.4: Introduction to Quantum Information

Question 1
Well done question. Some students struggled with part (b) and the calcu-
lations in part (d). Many students failed to provide physical interpretation
of the results in part (g).

Question 2
This was the most popular question on the paper. Parts (a) and (b) were
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standard problems and did not pose much difficulty. Some students failed
to spot the linearity of equations in part (c). In part (d) most marks were
lost for not estimating the imaginary part of the trace. Good attempts at
part (e).

Question 3
The bookwork in parts (a) and (b) caused no problems. Most marks were
lost in parts (c) and (e).
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C7.5: General Relativity I

Q1: This question was the least popular. Parts a to c were mostly bookwork
and well done. Candidates had difficulty proving the Bianchi identity for
the field strength in part d. Most candidates were unable to complete part
f, and there were no correct answers for part g.

Q2: Parts a and b were mostly well done, except for a few algebraic errors.
Some candidates used the Euler–Lagrange equations for part a but did not
state why this was equivalent to varying the action. In part d, a handful
of candidates were able to use the conserved quantities to identify the
new coordinates, though few correctly identified the region of (T,X) plane
covered by the old coordinates.

Q3: This question attracted the most attempts. Candidates lost marks in
part a by not specifying spherical symmetry and in part b by not showing
that the Lagrangian is constant on the geodesic. Part d was attempted by
many but completed correctly by few. Parts e, f and g were well done by
those who attempted them.

C7.6: General Relativity II

Question 1: The question was attempted by less than half of the candidates.
Part a) was done very well in general. Most of the candidates wrote down
the correct definitions. In part b), many candidates explained well why
the metric given in the problem is the most general form of the spherically
symmetric metric. Several candidates attempted the coordinate transfor-
mations but most of them could not reach the conclusion except for few
candidates. In part c), most of the candidates only show B = B(r), and only
one candidate proved that A can also be chosen to be A = A(r). None of
the candidates proved that the equation also satisfies Brr = 0.
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Question 2: It is pleasing to see most of the candidates can compute
Christoffel symbol of a spherically symmetric metric. It is also observed
that most of the students had difficulty with straightforward but long
calculations, for example, computing the components of Ricci tensor of
Vaidya metric. Most of the students had managed to compute just only
one non-vanishing component of Ricci tenor, although the question was
meant to calculate all components. Also, all examinees taking question
2b) had not shown the vector field tangent to the out-going energy flux
in Vaidya space-time obeys null geodesic equation. Some students had
not understood the definition of a space-like hyper-surface properly, as at-
tempts were made to show that the normal vector of such a hyper-surface
is space-like. Question 3: Nearly all students attempted this question.
Most students did well on the bookwork parts a) and b). Many candidates
came up with a correct strategy to solve part c), but nearly everyone strug-
gled with the longer computation that requires correct manipulation of the
metric components of Kerr. The first part of d), finding λ+ such that η+ is
null on the horizon r = r+, was worked out correctly by a good proportion
of the candidates, however nearly no one showed that η+ is time-like for
all r > r+. Finally, part e) seemed easier again for most of those candidates
who attempted it and most of those scored good points here.
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