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Part I

A. STATISTICS

• Numbers and percentages in each class.

See Table 1.

Numbers Percentages %
2017 (2016) 2017 (2016)

Distinction 31 (18) 76 (85.71)
Pass 10 (3) 24 (14.29)
Fail 0 (0) 0 (0)
Total 41 (21) 100 (100)

Table 1: Numbers and percentages in each class

• Numbers of vivas and effects of vivas on classes of result.
No vivas were held.

• Marking of scripts.
All dissertations and mini-projects were double-marked, after which
the two markers consulted in order to agree a mark between them.
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All written examinations and take-home exams were single-marked
according to carefully checked model solutions and a pre-defined
marking scheme which was closely adhered to. A comprehensive
independent checking procedure is also followed.

B. New examining methods and procedures

The process for calculating the final classification was simplified for 2016–
17 to make it more transparent. The revised process for calculating the
USM was agreed by the Joint Supervisory Committee and published in
the examination conventions at the start of the year.

C. Changes in examining methods and procedures currently
under discussion or contemplated for the future

None.

D. Notice of examination conventions for candidates

Notices to candidates were sent on: 13 October 2016 (first notice), 21st
November 2016 (second notice), 15th February 2017 (third notice) and the
5th May 2017 (final notice).

The examination conventions for 2017 are on-line at
http://mmathphys.physics.ox.ac.uk/students.
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Part II

A. General Comments on the Examination

Table 2 gives the rank of candidates and the number and percentage of
candidates attaining this or a greater (weighted) average USM.

Table 2: Rank and percentage of candidates with this or greater overall USMs

Av USM Rank Candidates with %
this USM and above

96 1 1 2.44
95 2 2 4.88
91 3 4 9.76
90 5 5 12.20
88 6 7 17.07
87 8 8 19.51
86 9 9 21.95
85 10 10 24.39
83 12 12 29.27
82 13 13 31.71
80 14 15 36.59
79 16 16 39.02
78 17 20 48.78
77 21 23 56.10
75 24 25 60.98
74 26 27 65.85
72 28 28 68.29
71 29 31 75.61
69 32 33 80.49
66 34 34 82.93
65 35 36 87.80
64 37 37 90.24
63 38 39 95.12
60 40 40 97.56
52 41 41 100

B. Equality and Diversity issues and breakdown of the re-
sults by gender

This section has been removed the from public report, as the cohort contained fewer
than 6 candidates

Oral Presentation All candidates passed the requirement to give an oral
presentation on a specialist topic.
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C. Detailed numbers on candidates’ performance in each
part of the examination

The number of candidates taking each paper is shown in Table 3. In
accordance with University guidelines, statistics are not given for papers
where the number of candidates was five or fewer.

Table 3: Numbers taking each paper

Paper Number of Avg StDev
Candidates USM USM

Advanced Fluid Dynamics 7 65.43 19.69
Advanced QFT 10 73.40 18.49
Advanced Quantum Theory 13 86.00 14.98
Algebraic Geometry 1 - -
Algebraic Topology 1 - -
Applied Complex Variables 2 - -
Astrophysical Gas Dynamics 4 - -
C3 1 - -
Collisional Plasma Physics 3 - -
Collisionless Plasma Physics 9 87.78 9.47
Differentiable Manifolds 4 - -
Galactic and Planetary Dynamics 3 - -
General Relativity I 19 69.63 10.36
General Relativity II 17 71.88
Geometric Group Theory 1 - -
Geophysical Fluid Dynamics 3 - -
Groups and Representations 26 75.92 13.56
Introduction to Quantum Information 22 75.86 10.64
Kinetic Theory 12 72.25 12.74
Networks 9 69.00 5.76
Nonequilibrium Statistical Physics 8 89.25 7.07
Numerical Linear Algebra 1 - -
Perturbation Methods 7 67.71 11.13
Quantum Field Theory 39 70.25 13.67
Quantum Matter 11 70.90 13.46
Radiative Processes and High Energy Astrophysics 2 - -
Statistical Mechanics 4 - -
String Theory I 16 66.56 12.89
Supersymmetry and Supergravity 16 80 10
Dissertation (single unit) 9 74.44 7.1
Dissertation (double unit) 10 81.20 7.33
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The number of candidates taking each homework completion course is
shown in Table 4. In accordance with University guidelines, statistics are
not given for papers where the number of candidates was five or fewer.

Table 4: Numbers taking each homework completion course

Paper Number of Percentage
Candidates completing course

Astroparticle Physics 19 100
Astrophysical Gas Dynamics 4 -
Beyond the Standard Model 6 100
Conformal Field Theory 16 100
Cosmology 6 100
Group and Representations 22 100
Introduction to Gauge-String Duality 3 -
Nonequilibrium Statistical Physics 8 100
Non-perturbative Methods in Quantum Field Theory 5 -
Quantum Field Theory in Curved Space Time 11 90.9
Quantum Matter 11 100
Radiative Processes and High Energy Astrophysics 2 -
Soft Matter Physics 7 100
String Theory II 9 100
The Standard Model 1 -
Topics in Quantum Condensed Matter Physics 4 -
Topics in Soft and Active Matter Physics 3 -
Topological Quantum Theory 21 100
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D. Assessors’ comments on sections and on individual ques-
tions

Advanced Fluid Dynamics

Question 1
This question proved to be more challenging than was expected in nearly
all of its parts.

(a) A surprising number of students failed to recognise that proving∇·B = 0
was an important step in ascertaining the legitimacy of the proposed field
and another set did not appreciate that B · ∇α = B · ∇β = 0 proved that α
and β stayed constant on field lines and that fixing the configuration of the
footpoints was equivalent to setting α and β values on the boundary.

(b) It proved challenging for nearly everyone to figure out that the con-
straint of fixed α and β at the boundary simply meant that in applying the
variational principle one had to vary α and β subject to those variations
being zero at the boundary. However, one candidate did get full marks on
this question and another had the right idea, nearly got there, but gave up
—thus giving the proof of principle that it was not impossible to solve this
part of the question.

(c) This part went smoothly for nearly everyone, except for the minor sin
of not stating explicitly that linear force-free field was one with constant λ.
But nearly all used that fact implicitly and so lost no marks.

(d) What was an extremely straightforward problem in solving an ODE
went wrong for far too many candidates. Several candidates got them-
selves tangled up in algebra by not realising that the required field could
be obtained by assuming that it was exp(−γz) times a function of x only.
Applying boundary conditions to a sinusoidal solution of a wave equation
and hence working out constants also proved more challenging than it
ought to have been for 4th-year students.

Question 2
Part (a) was done well by almost all candidates. One candidate used an
incorrect argument to replace R · n by R, instead of relating an expression
for the force to an integral of σ · n.

There was an error in part (b). The hint for the Brownian force should
have been −kBT∇ri(logψ), as in lectures, not −kBT∇riψ. This error was
spotted by a candidate, and a correction announced, within the first 30
minutes. No candidate lost marks due to this error. All candidates found
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the equation for R, up to some lost factors of 2. Several candidates were
careless about (I + ασ) and its inverse being matrices, which must remain
on the left of the vectors they multiply.

The integration to find an evolution equation for C = 〈RR〉, a useful inter-
mediate step, caused more problems. One candidate did not integrate at
all, and another lost many terms by trying to integrate in vector notation
rather than integrating by parts using suffix notation.

Only two candidates used
O

I = −(∇u) − (∇u)T to get the strain rate term
in the equation for σ. One candidate tried instead to get (∇u) + (∇u)T

from the Brownian term in the evolution equation for 〈RR〉. It is useful
to note that (I + ασ), σ, and C all commute, because they are all linear
combinations of I and C. A few candidates correctly obtained λ = ζ/(4H)
and µ = nkBTζ/(4H), but there were many calculational errors.

No candidate observed that the definition of σ implies σ = 0 when ∇u = 0.

In part (c), the derivation of quadratic equations for σ11 and σ22 was done
well by almost all candidates, although one lost factors of λ.

Several candidates asserted that σ11 ∼ −µ/λ, which only holds for α = 0
and λγ � 1. Only one candidate commented on the stress then being
negative.

Noone wrote explicitly that σ11 ≥ 0 when α > 0, but when α = 0 the
elongational stress σ11 increases to infinity when γλ = 1/2, then becomes
negative (and hence mechanically unstable) when γλ > 1/2.

Advanced Quantum Field Theory

The candidates were asked to answer all 3 questions. The average mark
for these questions were 20.7, 14.9 and 16.0 out of a possible 25 marks. Two
candidates did not make significant attempts at the second and third ques-
tions and removing them the average marks become 21.6, 17.4 and 19.4,
demonstrating that the remaining candidates did all questions reasonably
well.

Question 1 involved a mix of bookwork and calculation and was generally
well done. Question 2 started with a apart on more formal bookwork and
this was quite poorly done, explaining why the average mark was lower.
The calculation part was well done. As for question 1, the mix of bookwork
and calculation was generally well done in question 3.
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Advanced Quantum Theory

I think this exam was fine for MMathPhys.

The following comments are regarding the marking scheme. Part (a). .25
was lost if the student did not mention that the transfer matrix is symmetric
therefore diagonalizable. If the students stopped at Z = Tr[TN] this was a
2 point deduction. However, if the diagonal form of T was written with
this, then I gave full credit.

As mentioned above algebraic mistakes were generally .25 deductions.
Errors that followed from prior mistakes were not deductions if the process
was properly followed. However additional deductions could be made if
the student ended up with an answer that they should have spotted as
nonsense as a result.

In the first 6 mark section, a lot of students ended up with 1 on the off
diagonal. If they seemed to set it up correctly and somehow forgot to add
1+1+1 I deducted .5. If not, I would deduct 1. Usually the deciding factor
was whether they had an expression for T written as a sum over tau in
some way that should have given them the right answer. A huge number
of students could not diagonalize the 2x2 matrix, and did not recognize
that this can be done by inspection in this case. Errors here were typically
only .25 marks. For students who couldnt get started small amounts of
credit were given for writing down things that were basically in the right
direction, but I capped this type of credit at 1 mark. If the student stopped
at the partition function and did not get a free energy I deducted 1.5. In the
final expression a lot of students wrote the energy per unit cell rather than
per site (.25 deduction). For those who got very little credit, 1 mark was
given for f=-(k T/2) log Lambda+. Another .25 deduction if you dropped
the sign.

In section c, in the first 2 mark section, a thermodynamic expression not
using the transfer matrix would get only 1 mark. The students had to be
clear about where U comes from (I think some students just memorized this
from a homework) or a 1 mark deduction. .25 deduction if non-normalized
eigenvectors were used, or if U did not have the sqrt(2). A correct detailed
outline of this section without a full calculation would get 3/5. No answer
that gives a nonzero result would get more than 4 since students should
have seen that the answer has to be zero.

In section d the first equation was worth 1 mark. .5 for any thermodynamic
expression, and .5 for realizing that one cannot just write Tr[tau2TL] in the
sigma basis. If an error in part a made the result of the matrix expression
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come out incorrect here I deducted .5. Again .25 for using an incorrectly
normalized U. Max of 3.5 for anything obviously wrong (including expec-
tions of 1 or greater).

Collisional Plasma Physics

Only three students took the exam, and all of them performed very well.

Question 1. There were a few problems with the last question of part (c).
The statement asked to check whether the result in part (c) was consistent
with the assumptions used to derive it. The students only needed to check
that w ∼ uα0

√
νt, but some of the responses were tangential. One of the

students did not calculate the constant N, and another did not realize that
ν‖ and ν⊥ should be evaluated at uα0 and not at |w + uα0x̂|.

Question 2. All the students solved this problem.

Question 3. This was the question that was more difficult for the students.
Several students estimated incorrectly the size of the collisional force be-
tween electrons and ions because they forgot the thermal force. One of
the students failed to give the right estimate for the ion viscosity. Another
student was confused about how to treat terms of different order in the
same equation. For example, in the total-momentum equation the pres-
sure gradient dominates, leading to the result that it must be small since
it cannot be much bigger than every other term. However, this does not
mean that the pressure gradient is exactly zero, and it cannot be neglected
completely in the total-momentum equation.

Question 4. All the students solved this problem.

Collisionless Plasma Physics

The cohort was strong, and it showed both in the homework and the exam.
.

Question 1. In relative terms, this was the question in which the students
performed worse. There were two main issues with the students’ answers
to part (a):

• In some cases, the problems arose when the students tried to prove
quasineutrality, or when they justified neglecting the displacement
current in Ampere’s equation. In both cases, the justification is that in
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kinetic MHD the plasma is assumed to be non-relativistic. I decided
to take points off if the student used that the electric field is zero to
justify quasineutrality and the neglecting of the displacement current.

• An important result for part (a) is that the average parallel velocity us‖

only depends on the radial coordinate r. The velocity us‖ is an integral
of the distribution function and it is proportional to B. As a result,
if the distribution function and the magnetic field magnitude B only
depend on r, us‖ only depends on r. If the student used symmetry or
other similar argument to justify that us‖ only depends on r instead of
the fact that us‖ is completely determined by the distribution function,
I took points off. If the magnitude of the magnetic field B was not
mentioned, I took points off as well.

One of the students forgot to show that the distribution function pro-
vided in the statement satisfied the lowest order drift kinetic equation.
Another student decided to show that the distribution function satisfied
an even higher order drift kinetic equation. They were lucky that in this
configuration, the provided distribution function does indeed satisfy the
higher order equation, but in a more general configuration, one would
have needed to correct the distribution function with a small extra piece.

Question 2. There was an error in the statement of this question: the lower
limit of the integral in equation (3) should have been rc instead of r0. The
students noticed the error and it was corrected during the exam. All the
students performed well in this question, probably because there is a very
similar question in the homework. There were minor errors, mostly when
taking the limit at infinity of the hyperbolic tangent.

Question 3. There was two small errors in the question: k‖ in equation
(8) should be kz, and after equation (7), LTi and ηi are defined even though
they do not appear anywhere in the problem. These errors were noticed
by the students and corrected during the exam. There were a few students
that lost points in this problem because they were not careful deriving
equation (7). In the definition of the plasma dispersion function, the sign
of the imaginary part of ω (and not of ω/kz) matters. For this reason, it is
important to conduct the operations in such a way that the final plasma
dispersion relation depends on ω/|kz| and not on ω/kz. Another common
mistake for which I took points off was that the students did not consider
the signs of kz and ky when determining the values of dui‖/dx for which
the plasma is unstable.

Question 4. Part (d) of this question caused problems for many students
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because the statement was confusing. In the statement, the students are
asked to assume that |ω −Ωe| � Ωe ∼ ωpe. The frequency ωpe is a function
of x that ranges from 0 to a value of the order of Ωe, so the students were
not expected to assume that |ω−Ωe|was always small compared toωpe, but
the statement was clearly confusing. The students did not ask about this
part of the question, so the statement was not clarified during the exam.
The problem with assuming that |ω−Ωe| � ωpe for every x is that one of the
three cut-off densities is found by settingωpe ∼ |ω−Ωe|(k‖c/Ωe)2, and in part
(a) students show that one would need to launch a wave with k‖c/Ωe ∼ 1.
For this reason, several students were unable to find one of the three cut-off
densities. I awarded full points to any student that could not find one of
the three cut-off densities because of assuming that |ω −Ωe| � ωpe. I only
took points off when the students incorrectly considered that k2

⊥
could be

complex, or when the students failed to find the two cut-off densities that
could be obtained by assuming |ω −Ωe| � ωpe.

Galactic and Planetary Dynamics

Three candidates took the Galactic and Planetary Dynamics course. They
were assessed by a miniproject in which they were asked to (i) carry out
some simple calculations for the simple pendulum problem; (ii) use Lie
transform methods to develop the first- and second-order perturbative
solution; (iii) to derive the Deprit series for the general case, showing how
this can be used to construct “superconvergent” expansions. This was
a challenging project: the calculations required in part (ii) were lengthy
and the Lie transform method itself is quite subtle. Only one candidate
successfully constructed the second-order transformation in part (ii). In
contrast, parts (i) and (iii) were more straightforward. All three candidates
produced reports of distinction, with the best being almost perfect.

General Relativity II

Geophysical Fluid Dynamics

Mix of solid and strong attempts.

Q1. Marks were lost in a) over derivation of pressure term in the lower
layer. and (a) setting the initial potential vorticity, boundary conditions
and final interpretation of alternative configurations.
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Q2. Strong performance on this question, with marks dropped for missing
units, algebraic slips and interpreting signs of wavenumbers in (d)

Q3. a, b done well barring algebraic errors. Candidates appeared to run
out of time on later parts

Groups and Representations

Q1) A question on some general group theory and representations of Z4
which was tackled by 22 students, with a strong average of 20.7/25. This
question was testing some of the basic knowledge so the high average is
expected.

Q2) A question on one of the dihedral groups and its representations
tackled by 24 students, with an average result of 18.3/25. This was a
somewhat more difficult question which required efficient calculations in
parts.

Q3) A question on the group SU(6), its algebra and some of its representa-
tions, tackled by 15 students. This was probably the most difficult question
with an average of 14.1/25.

Q4) A question on the Lie algebra G2, some of its representation and its
A2 sub-algebra, testing the ability to work with roots and weights. This
question was attempted by 24 students with an average result of 20.8/25
and could perhaps have been slightly more difficult.

Kinetic Theory

Q1) Section (a) was mostly done well. Several candidates confused energy
and temperature, taking moments with respect to |v|2 instead of |v − u|2.
Two candidates introduced a multiple-scales expansion of f , which is un-
necessary.

Section (b) was done well by almost all candidates. When asked to interpret
the peculiar velocity, several candidates wrote something about a “flow
velocity” or just “velocity” relative to the mean velocity, with no mention
of the particle velocity.

Section (c)

One candidate treated u as spatially homogeneous, despite the explicit x-
dependence in u = x ·A. A few candidates dropped the contribution from
u · ∇u with no justification about it vanishing for a shear flow.

12



Many candidates tried to derive mass and momentum conservation equa-
tion by integrating the displayed equation over v, still treating x, v, t as
independent variables, and trying to take x and t derivatives outside the
integrals. It is much easier to integrate with respect to w. Only two can-
didates realised that

∫
wF dw = 0 is the defining property of the peculiar

velocity, and that this property is preserved by the equation one obtains
from the moment with respect to w of the displayed equation.

The energy equation was found easier, with almost all candidates mul-
tiplying by 1

2 |w|
2 and integrating with respect to w. Several candidates

obtained an incorrect expression for the pressure tensor with an extra
isotropic term, through not noticing that the isotropic term involving Tr A
vanishes, leaving Pi j =

∫
wiw jF dw as expected.

Several candidates who attempted the last part used the Euler form P = θρI
instead of the Navier–Stokes form P = θρI−µ(A+AT) of the pressure tensor.
Some assumed a symmetry, or antisymmetric, property of A that does not
generally hold. None recognised that A : P represents viscous heating, or
the work done against shear (as distinct from against an isotropic pressure).

Q2 a) Most students obtained full marks on this part. They know how to
take moments of a kinetic equation. The only issues were trivial algebra
lapses (signs etc.) b) A surprisingly large number of students failed to re-
alise that the electric-field perturbation must be obtained from the Poisson
equation, in terms of δn . A smaller, but still surprising, number thought
they were deriving some form of sound waves, rather than Langmuir
waves. It appears that at least in some instances, the ”pattern recognition”
mode of thinking, triggered by the presence of an adiabatic exponent and
pressure gradient, overrode physical understanding of plasma oscillations.
c) With only a few exceptions, students adequately completed the standard
bookwork calculations leading to δ f , although some included what was
perhaps too much unnecessary (irrelevant) detail. Most were able to iden-
tify ballistic/phase - mixing term arising from the initial condition, but
fewer realised that the resonant part of also contained a phase mixing term
and fewer still that resonant part would develop, on intermediate time
scales, a δ- like peak (Van Kampen mode) d) Many appeared to run out
of time on this part (probably on account of inefficient handling of part
c). Only a few had a clear idea of what to do: Calculate δn and δp from
δ f , neglecting phase-mixing terms (because they oscillate in phase space),
expanding in small κυ/ω, then work out from the relationship between δn
and δp. No-one spelled out that the reason Landau damping was lost in
the hydrodynamic equations was that the kinetic damping required all υ
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moments to be captured (although one student did show formally where
in the calculation it was lost). The question has proved more challenging,
on average, than I had anticipated.

Q3 was confined to material covered in the lectures or problem set and
all candidates found it rather easy. The material is pretty advanced, how-
ever, and only published from 2012 onwards so I think the high scores are
a tribute to the quality of the candidates. Several candidates lost marks
through small algebraic errors or failure to answer a specific question prob-
ably through oversight rather than ignorance. The mark scheme proved
satisfactory.

Nonequilibrium Statistical Physics

Q1 was a question on Master equation for some simple processes. It was
attempted by 11 students whose marks ranged from 17 to 25. Q2 was on
path integrals, and was mostly a repeat of coursework. It was attempted
by 1 student who got full marks. Q3 was a variation on the Kramers
and escape process. It was attempted by 12 students and marks were
generally very high (in the range of 22-25). All solutions demonstrated a
good understanding of the course material.

Quantum Field Theory

Q1: students proved very good understanding of this part of the syllabus.
The only part which turned out to be problematic was a proper inter-
pretation of the charge Q and of the commutation relations [Q,Phi].
Few candidates also struggled with a proper treatment of the function
f while deriving equations of motion.

Q2: The main difficulty in this problem was in part c) where many stu-
dents calculated the correlation function in momentum space instead
of the correlation function in position space as it was asked in the
question. Moreover, many candidates missed one or more Feynman
diagrams in their answers. Most candidates proved to correctly read
off Feynman integrals provided they found all Feynman diagrams.

Q3: The main difficulty was in part e): many candidates incorrectly set up
a relevant integral as well as there were many computational mistakes
in calculating the integral. Also, many students had difficulties with
a proper derivation of Feynman rules.
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Q4: Only few candidates decided to solve this problem. First three parts
were solved by most of them correctly. However, they found difficult
the last two parts. In particular, a proper reasoning to prove finiteness
of the beta-function was missing in most cases.

Quantum Matter

There were no apparent problems on this exam. The marking was roughly
as anticipated. For a few cases marks were given for answers slightly
different from those in the official solutions if it was deemed the answer
given was also an acceptable interpretation of the question. Question 2b
in particular - it was not clear that one needed to write a final results as a
sum over k. Instead any form was accepted.

Note, there were a few very high scores which brought up the average, an
no scores that were extremely low to compensate. So I think the mean is
artificially high.

Radiative Processes and High Energy Astrophysics

Small number of candidates, but all did very well.

Supersymmetry and Supergravity

The mean of the students’ exam results was very high. I would like to
note that at the end of the lecture course only a very motivated set of
students was left who also performed well on the example sheets. Hence
I am not surprised by this high average. Below are some small comments
on the individual questions Q1: The overall standard was high. Most
common (minor mistakes) were sign mistakes and discarding some terms
too early. Q2: Again the quality answers was very high. I did not observe
any common mistakes in this question. Q3: All candidates who chose to
do this question had difficulties with part d of this question (determing
gaugino and scalar masses). Apart from this sub-question, the standard
was high. Q4: The standard of the answers was high in all sub-questions.
The most deduction were in the part of matching matter multiplets of
different supersymmetries.
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C3.1: Algebraic Topology

Question 1. Very few candidates attempted this question even though it
was probably the easiest on the exam, perhaps reflecting less comfort with
algebraic than topological aspects of the course. There was one strong
answer.

Question 2. Most candidates attempted this question, but many struggled
with one or more sections of it. There was one strong answer. (b) Most
candidates made reasonable attempts in this part, though there were some
errors of detail and here and there a lack of clarity about the relative
cohomology case. (c) For part (i) a number of candidates did a computation
rather than simply applying Lefschetz duality. In part (iii), most but not
all attempts to directly compute the simplicial cup product went awry, but
there were a number of good answers using excision and identifying the
quotient space and its cohomology ring.

Question 3. All candidates attempted this question, and the standard of
answers was reasonable overall. There were three nearly perfect answers
and a number of other decent ones. (a) A number of candidates either
misidentified the boundary map in the Mayer–Vietoris theorem, or simply
recapitulated the standard snake procedure for determining the boundary
map without actually identifying explicitly the map in this case. (c) (i)
Many candidates used a modified form of Mayer–Vietoris for the mapping
torus (also obtainable as a long exact sequence of a pair), with two instead
of four copies of the homology of K —this substantially reduced the com-
plexity of the calculations. Nevertheless, in many cases despite obtaining
the correct exact sequence, candidates made mistakes in computing the
kernels and cokernels and piecing together the answer. (ii) There were
many correct answers here, though also a few that mistakenly claimed the
manifold was of dimension 2.

C3.4: Algebraic Geometry

Most candidates attempted questions 2 & 3. The quality of the scripts was
exceptional, with almost flawless answers to every questions, even though
the exam was about the same difficulty as in previous years.

The most common difficulty was question 3(d) with candidates not spot-
ting an inverse map or running out of time.

Only one candidate had time to attempt three questions.
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In question 2(b), R stands for the coordinate ring, this was announced
during the exam, none of the candidates were confused in their answers
to 2(b)

C5.6: Applied Complex Variables

1. This was by far the least popular question but was done well by many
who attempted it. The basic conformal mapping was mostly handled
competently, although few properly justified the final Möbius map
to permute the points on the real axis. Those who could see how
to use the hint generally managed the rather unpleasant calculations
needed for part (c).

2. This was the most popular question. Few candidates convincingly
performed the contour integration for part (b); many failed to use
a consistent definition of the multifunction throughout. The book-
work in part (c) was mostly ok, though few candidates gave good
explanations for the properties of H, in particular why it should be
real on Γ.

3. This question was generally not well done. In part (a), most candi-
dates seemed to understand the method but were let down by very
many errors in basic manipulation (integration by parts, partial frac-
tions, etc). Two candidates were misled by the hint inserted by the
external examiner into expressing g(ζ) in terms of an unevaluated in-
tegral, making it harder to determine Γ. In part (b), most candidates
were able to derive equation (?), but the Wiener–Hopf decomposi-
tion caused many problems, particularly amongst those who were
unable to identify the points k = ±1 in the Argand plane. Very few
candidates completed the contour integration required for part (iv).

C3.2 Geometric Group Theory

Q1 This was a basic question about presentations and algorithmic prob-
lems. All students attempted this. Part a was done well. Many students
had difficulties with part b.i. They did not realize that to produce a list they
had to run two procedures ‘in parallel’ and that it is not possible to give a
yes/no answer whether a given map extends to a homomorphism. Simi-
larly in part b.ii some candidates did not realize that to check surjectivity
it is enough to check whether the generators are in the image. Several did
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not explain properly how to check whether generators are in the image.
In part b.iii most candidates did not realize that they had to search for
appropriate homomorphisms H′ → G rather that H→ H′.

Quite a few candidates who did not manage to do part b assumed the
results and gave either complete or partial solutions to part c. Only 1
candidate managed to solve all parts of this question.

Q2 This was a question on amalgamated products and actions on trees
attempted by most students. Part a was done generally well. In part b
many students couldn’t show that if a group has an infinite centre then a
finite index subgroup has infinite centre too.

Part c.i was generally well done but some candidates failed to give a
convincing proof as they tried to define the fixed point rather than simply
show its existence.

Several students solved part c.ii using induction.

Few students did part c.iii. Very few realized that part c.ii was relevant
and that one could use the action on the subtree of b.ii rather than T.

Q3 This question was attempted by only 2 students. It was on the last part
of the course dealing with quasi-isometries and hyperbolic groups.

Both candidates did well in parts a and b gaining most points but they
failed to tackle part c.

I think all question contained substantial pieces of bookwork and I see no
excuse for the candidates that did poorly. Perhaps the students that are on
the 2.i/2.ii border deserve a 2.i as candidates found questions 1b i,ii harder
than I anticipated.

C3.3: Differentiable Manifolds

Question 1: Part (a) was bookwork, and well done. There were no serious
attempts on parts (b),(c).

Question 2: This was the easiest question, and everyone attempted it. Only
a minority could do (c)(ii).

Question 3: Not an easy question, but mostly well done by more able
candidates.

18



C7.4: Introduction to Quantum Information

Question 1

This was the most popular question on the paper and generally well done.
Parts (a) and (b) were bookwork and the solutions were mostly flawless.
In part (c) some students did not notice that the measurement outcome
x = 0 is inconclusive as there can be errors in both qubits. Most marks
were lost in part (e) as many candidates struggled to describe the recovery
procedure. Many good attempts at part (f).
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Question 2

Fairly well done question. Very few students showed that P± satisfy con-
ditions of orthogonal projectors. Many struggled with part (e). There were
various attempts at part (f) but most students got the right idea.

Question 3

The bookwork in part (a) and the calculation of the Bloch vector in parts (c)
and (d) caused no problems. However surprisingly many students strug-
gled to prove positivity of a CPTP map in part (b). Common sloppiness
and algebraic mistakes lead to mark losses in part (e).

C7.5: General Relativity I

Question 1

This exercise dealt with tensors in GR. While most students who attempted
this exercise solved the first 2

3 , the unfamiliar nature of the last part caused
problems to all of the students.

Question 2

Most students did well in this exercise, few were able to find k(y) in (d).
Happily, most had the idea for the correct parametrization in (c).

Question 3

This was attempted by the fewest students. While nearly everyone solved
the introductory parts, the final part seemed too difficult for most.

C6.1: Numerical Linear Algebra

This seems to have been a reasonably successful exam with a range of
marks including many high marks for the small number of undergraduate
candidates.

C5.5: Perturbation Methods

Question 1. This was the least popular question. The bookwork in part
(a) was very well done. In part (b) the application of Laplaces method
was reasonably well done, though some candidates lost marks for failing
to justify the size of the error term during each step of the argument or for
failing to verify that the expansions are self consistent. In part (c) nearly
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all of the candidates identified the correct steepest descent contour, but
only a handful dealt successfully with all of the steps required to derive
the leading-order term in each regime.

Question 2. This was the second most popular question. In part (a) the
bookwork on stating and applying Van Dykes Matching Rule was well
done by all but a handful of candidates. In part (b) the application of
the principle of dominant balance caused more problems than anticipated:
many attempts did not consider all of the different cases in the expansion
of f (εαX; ε) as ε → 0+, though the minority that did then made efficient
use of the hint. In part (c) the application of boundary layer theory caused
even more problems, with many candidates failing to seek a boundary
layer at both x = 0 and at x = 1 (the former despite observing in part (a)
the non-uniformity in the expansion of f (x; ε) near x = 0).

Question 3. This was the most popular question. In part (a) the application
of multiple scales theory was very well done on the whole. While many
lost marks for algebraic slips in the derivation of the secularity condition
or for failing to find the real part of A(T) in the two cases, there were
many excellent solutions. In part (b) the application of WKB theory to a
third-order ordinary differential equation was well done by a significant
minority, the majority receiving only partial credit.

C5.3: Statistical Mechanics

All the questions were done competently by the four MMathPhys students.

21



E. Comments on performance of identifiable individuals

Removed from public report

22



F. Names of members of the Board of Examiners

Examiners:

Prof Xenia de la Ossa
Prof John Chalker
Prof Andre Lukas (Chair)
Prof Gordon Ogilvie
Prof James Sparks
Prof Dan Waldram

Assessors:

Prof Steven Balbus
Prof Michael Barnes
Prof Charles Batty
Prof Tony Bell
Prof Simon Benjamin
Prof James Binney
Prof Stephen Blundell
Dr Andreas Braun
Prof Philip Candelas
Prof Joseph Conlon
Prof Garret Cotter
Prof Andrew Dancer
Dr Paul Dellar
Dr Amin Doostmohammadi
Prof Christopher Douglas
Prof Artur Ekert
Dr Christopher Eling
Prof Fabian Essler
Prof Andrew Fowler
Prof Ramin Golestanian
Prof Peter Grindrod
Dr Stephen Haben
Dr Ulrich Haisch
Prof Ben Hambly
Dr Heather Harrington
Prof Peter Howell

23



Prof Dominic Joyce
Dr Sven Krippendorf
Prof Ard Louis
Dr Tomasz Lukowski
Prof John Magorrian
Prof John March-Russell
Dr James Martin
Prof Lionel Mason
Dr Romain Mueller
Prof Jim Oliver
Dr Arijeet Pal
Prof Panos Papazoglou
Prof Felix Parra-Diaz
Prof Phillip Podsiadlowski
Prof Alexander Ritter
Prof Graham Ross
Prof Sakura Schafer-Nameki
Prof Alexander Schekochihin
Prof Graeme Segal
Dr David Seifert
Prof Steve Simon
Prof Andrei Starinets
Prof Caroline Terquem
Prof Ulrike Tillmann
Dr Eugene Vasilyev
Prof Vlakto Vedral
Dr Thorsten Wahl
Prof Andy Wathen
Prof Andrew Wells
Prof Julia Yeomans

24


