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1. [25 marks] The classical sawtooth Ising model, depicted in the figure below, consists of a chain
of corner-sharing triangles hosting two sets of Ising spins: si on the base of the chain and s̄i on
the apex of each triangle, with si, s̄i ∈ {−1,+1}. We assume there are L unit cells with periodic
boundary conditions, so that sL ≡ s0 and s̄0 ≡ s̄L. The spins interact via antiferromagnetic
exchange couplings J̄ > J > 0 as shown in the figure, so that the classical energy of the chain
is given by

E[{si, s̄i}] =
L−1∑
i=0

[
Jsisi+1 + J̄sis̄i + J̄ s̄isi+1

]
. (1)

Note that there is no direct interaction between apex spins, and that each unit cell contains
two spins.

(a) [7 marks] Show that the partition function of the system at inverse temperature β ≡
1/kBT can be written in the form

Z[β, J, J̄ ] = Tr
{

(A[β, J, J̄ ])L
}
, (2)

where A[β, J, J̄ ] is a 2× 2 transfer matrix whose components are given by

A[β, J, J̄ ]ss′ = e−βJss
′
2 cosh[βJ̄(s+ s′)]. (3)

Your derivation should clearly demonstrate why the configurations of apex spins do not
appear explicitly as indices of the transfer matrix.

(b) [5 marks] Compute the free energy density (defined as the free energy per spin) as a
function of J, J̄ , and β in the thermodynamic limit, L→∞.

(c) [7 marks] Determine the behaviour of the entropy per spin as T → 0. Contrast its
behaviour when J̄ = J and when J̄ > J . Also determine the high-temperature (T →∞)
behaviour of this quantity, and explain why it is independent of J̄ and J .

(d) [6 marks] Determine the minimum-energy configurations of a single triangle when J̄ = J
and when J̄ > J . By considering how placing spins in their minimum-energy configura-
tion on one triangle influences adjacent triangles, give a qualitative explanation for the
results of part (c). Does a similar distinction between J̄ = J and J̄ > J arise when the
interactions are ferromagnetic?
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2. [25 marks] Consider the one-dimensional spin chain described by the Hamiltonian

H =
∑
i

(
−J [Si · Si+1 + u(d̂1 · Si)(d̂1 · Si+1)]−Dd̂2 · Si × Si+1

)
, (1)

where Si = (Sxi , S
y
i , S

z
i ) are spin-S operators (we assume S � 1/2), d̂1 and d̂2 are fixed unit

vectors, and we have the standard commutation relations [Sαl , S
β
m] = iδlmεαβγS

γ
l . We assume

the chain has L sites and periodic boundary conditions, so that S0 ≡ SL. Throughout, we will
take J > D > 0, and u > −1.

For the first part of this problem, set d̂1 = d̂2 = ẑ. In this case, H is invariant under rotations
in spin space about ẑ, and under the Ising symmetry operation Szi → −Szi .

(a) [5 marks] The Holstein-Primakoff representation is defined by

Szj = S − a†jaj , S+
j = Sxj + iSyj = (2S − a†jaj)

1/2aj , [aj , a
†
l ] = δj,l. (2)

Explain the nature and usefulness of this representation, taking care to discuss the role
of constraints in making the mapping from spins to bosons meaningful. Give any two
complications that may arise with using this representation.

(b) [6 marks] For the case u � 1, using the Holstein-Primakoff approach, carry out an ex-
pansion of H in inverse powers of S. Ignore the constant contribution and drop all terms
that grow more slowly than S when S becomes large. Show that the resulting Hamitonian
HLSW , the linear spin wave (LSW) approximation to H, takes the form

HLSW =
L∑
j=1

(Aa†j+1aj +A∗a†jaj+1) +Ba†jaj , (3)

where A and B are constants. Determine the value of these constants.

(c) [6 marks] Show that HLSW can be written in the form

HLSW =
∑
k

ε(k)b†(k)b(k), (4)

where b†(k), b(k) are bosonic creation and annihilation operators, and the sum is over the
discrete set of momenta k = 2πj

L , j = 0, 1, . . . , L − 1. What is the ground state |GS〉 of
HLSW ? What are the low-lying excitations and what are their energies?

(d) [4 marks] Show that the energy of the lowest-lying excited state computed from HLSW

becomes equal to that of the ground state at u = uc, where uc > 0 is a constant whose
value you should determine. This ‘energy gap closing’ signals a phase transition at u = uc.

(e) [4 marks] Now, consider a more general situation where d̂1 and d̂2 are arbitrary. When
u = D = 0, H reduces to the Heisenberg model, which is invariant under arbitrary
rotations (you need not prove this). By an explicit calculation, show that when D = 0,
H is invariant under spin rotations about d̂1, whereas when u = 0, H is invariant under
spin rotations about d̂2. Hence conclude that if both D and u are nonzero, H is not
invariant under spin rotations unless d̂1 = d̂2, as in the first part of the problem. [Hint:
determine the conditions for the vanishing of commutators of the form [H, n̂ ·Stot] where
Stot
i =

∑
j Sj, using translational invariance wherever possible.]
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