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1. [25]A one-dimensional simple harmonic oscillator has mass m and frequency ω.

(a) [3]Write down the path integral for the propagator 〈x|U(t; 0)|x′〉, specifying any
conditions on the paths involved in this expression.

(b) [6]Write down the equations of motion obeyed by a classical path xcl. Show that
the propagator can be written in the form

〈x|U(t; 0)|x′〉 = A(t)e
i
~Scl[x,x

′,t], (1)

where Scl[x, x
′, t] is the action for a classical path xcl that starts at position x′

at time t = 0 and ends at position x at time t, and

A(t) =

∫
Dy exp

[
i

~

∫ t

0
dt′

m

2

{(
dy

dt′

)2

− ω2y2

}]
(2)

is a path integral over paths satisfying y(0) = y(t) = 0, and is therefore
independent of x and x′. (Hint: express the paths in the path integral as
x(t) = xcl(t) + y(t) and use the equations of motion obeyed by xcl.)

(c) [6]By considering the most general solution to the classical equations of motion
and imposing appropriate boundary conditions, show that

Scl[x, x
′, t] =

mω

2 sinωt

[
(x2 + x′2) cosωt− 2xx′

]
. (3)

(d) [8]Using the results of parts (b) and (c) and the fact that the ground state wave-
function

ψ0(x) =

(
mω√
π~

)1/2

e−mωx
2/2~ (4)

must be an eigenstate of the time evolution operator, deduce an expression
for A(t) in terms of m, ω, t, and ~. (Hint: start from the eigenvalue equation
U(t; 0)|ψ0〉 = e−iE0t/~|ψ0〉 with E0 = ~ω/2.)

(e) [2]Combining the results above, write down an explicit expression for the path
integral of the harmonic oscillator 〈x|U(t; 0)|x′〉 in terms of x, x′, t,m, ω, and
~. Check your answer by verifying that in the limit ω → 0, it reduces to the
free-particle propagator,

〈x|Ufree(t; 0)|x′〉 =

√
m

2πi~t
e

im
2~t (x−x

′)2 . (5)

You may find the following formula useful: if Re(z) > 0,∫ ∞
−∞

dy e−
1
2
zy2+Jy =

√
2π

z
eJ

2/2z.

A15757W1 Page 2 of 3



2. [25]In some systems, the low-temperature ordered phase changes from spatially uniform
(the “ferromagnet”, denoted F) to spatially modulated (e.g. with φ(x) periodic
in space, denoted M), as a function of some experimentally tunable parameter.
Including the high-temperature disordered phase (the “paramagnet”, P), there are
three distinct phase boundaries, P-F, P-M, and F-M, which meet at a Lifshitz point,
LP. A transition from a spatially uniform to a periodically modulated phase is first-
order if the period becomes nonzero discontinuously across the transition.

A Landau-Ginzburg theory that captures this behaviour for a real or complex scalar
order parameter φ in one spatial dimension takes the form

βH =

∫
dx
[
α2(T )|φ|2 + ρ2|∂xφ|2 + ρ4|∂2xφ|2 + α4|φ|4

]
, (6)

where α2 changes sign from positive to negative as the temperature is lowered, and
α4 > 0 as usual, but we allow ρ2 to be either negative or positive as some external
parameter is varied. We ignore any temperature dependence in α4, ρ2, and ρ4.

(a) [2]Explain why we can ignore ρ4 when ρ2 > 0, but not when ρ2 < 0.

(b) [12]When φ is a complex scalar, consider a mean-field ansatz in which a single
Fourier mode φ(x) = Ake

ikx with k = ±k0 is non-vanishing. Show that it has
a free energy density that depends on the choice of k0:

f = (α2 + ρ2k
2
0 + ρ4k

4
0)|Ak|2 + α4|Ak|4. (7)

By solving the saddle-point equations, determine the values of k0 and Ak that
minimize f , and hence compute the free energy densities fP , fF , fM of the three
phases, as functions of α2, ρ2, ρ4 > 0 and α4 > 0. Use these to determine the
phase boundaries in the ρ2−α2 plane, identifying the order of each transition.
Sketch the phase diagram.

(c) [4]The Lifshitz point LP is at α2 = ρ2 = 0. Using the Gaussian approximation
and assuming that α2(T ) = At where t = (T − Tc)/Tc, determine the mean-
field correlation length exponent as this point is approached from phase P along
the line ρ2 = 0. (You should not need to perform any integrals explicitly.) [4]

When φ is a real scalar, we must consider a modified mean-field ansatz φ(x) =
Ak cos(kx) with k = ±k0. In this case, the F-M phase boundary changes its loca-
tion and its order; the other phase boundaries are unchanged. Therefore, for the
remainder of this question, you can focus on α2 < 0.

(d) [4]For k0 6= 0, (7) is no longer valid. Determine the free energy density for k0 6= 0,
and solve the resulting saddle-point equations to determine the modified free
energy density f̃M . (Hint: it may help to divide the system up into unit cells
of length 2π/k0.)

(e) [3]The free energy fF of the ferromagnet (with k0 = 0) is unchanged from part
(b). By comparing fF and f̃M for α2 < 0 as ρ2 is varied, determine the new
F-M phase boundary and the order of the transition.

You may find the following integrals useful:∫ 2π

0
sin2 x dx =

∫ 2π

0
cos2 x dx = π,

∫ 2π

0
sin4 x dx =

∫ 2π

0
cos4 x dx =

3π

4
.
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