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1. (a) The Lagrangian for scalar electrodynamics has the form

L = (Dµφ)∗Dµφ−m2φ∗φ− λ

4
(φφ∗)2 − 1

4
FµνF

µν ,

where Dµ = ∂µ + ieAµ and Fµν = ∂µAν − ∂νAµ.

(i) [3 marks] Write down the renormalized Lagrangian, including counterterms.

(ii) [4 marks] Consider the case that λ = 0. Draw all Feynman diagrams that in general
contribute to the one–loop correction to the 4–point scalar–scalar–photon–photon
vertex.

(iii) [8 marks] Setting all external momenta to zero, and working in the Lorenz gauge,
show that the one–loop correction to this 4–point vertex is proportional to

e4
∫

d4l

(2π)4
gµρPρσ(l)gσν

l2(l2 −m2)
+ (µ↔ ν) ,

where Pµν(l) = gµν − lµlν/l2. Then, using dimensional regularization in D = 4 − ε
dimensions, determine the renormalization factor, Z4, for the 4–point vertex, to O(1ε ).

[Feynman rules in the Lorenz gauge:
• For each internal scalar, i

k2−m2 .

• For each internal photon, −iPµν(k)
k2

.

• For each scalar–scalar–photon vertex, −ie(k + k′)µ, where k and k′ are the in-
coming and outgoing scalar 4–momenta.

• For each scalar–scalar–photon–photon vertex, 2ie2gµν .
Feynman’s formula to combine denominators:

1

AB
=

∫ 1

0
dx

1

(xA+ (1− x)B)2
, (1)

In D = 4− ε dimensions∫
dDk

(2π)D
k2a

(k2 + ∆)b
= i(−1)a−b

1

(4π)D/2
1

(−∆)b−a−
D
2

Γ
(
a+ D

2

)
Γ
(
b− a− D

2

)
Γ(b)Γ

(
D
2

) ,

where Γ(ε) = 1
ε +O(ε0). ]
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(b) Consider the quark–antiquark pair production process via gluon fusion in QCD. Specifi-
cally, focus on g(k1)g(k2)→ u(p1)u(p2). Neglect quark masses throughout.

(i) [7 marks] Draw the contributing tree–level Feynman diagrams. Writing the ampli-
tude in the form εµ1 (k1)ε

ν
2(k2)Mµν , where ε1,2 are the gluon polarization vectors,

consider the replacement ε1,2 → k1,2. Show that the corresponding amplitude is of
the form

kµ1k
ν
2Mµν ∝ ([T a, T b]− ifabcT c) ,

and determine the proportional factor in terms of Dirac spinors (it is not necessary
to perform any explicit contraction).

(ii) [3 marks] What does this imply for kµ1k
ν
2Mµν? How would this expression be different

for QED? Briefly discuss the wider importance of this result.

[Recall that �a�b+ �b�a = 2(a · b)1.
Selected Feynman rules in Feynman–’t Hooft gauge:
• Gluon propagator :

−igµν
k2

δab.

• 3-gluon vertex: gfabc((p1 − p2)γgαβ + (p2 − p3)αgβγ + (p3 − p1)βgγα), for incom-
ing momenta p1, p2, p3 associated with vertices α, β, γ and colour indices a, b, c,
respectively.

• Massless quark propagator: i �p
p2
δij .

• qqg vertex: igT aijγ
µ, where the colour indices i (j) are associated with the fermion

line pointing away from (towards) the vertex.
Here i, j and a, b are the colour indices in the fundamental and adjoint representations,
respectively.]
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2. (a) Consider the theory of a Yukawa interaction between a real scalar field φ(x) and a spinor
field ψ(x). The interaction Lagrangian is given by

Lint(φ, ψ, ψ) = gφ(x)ψ(x)ψ(x) ,

where g is a real coupling constant.

(i) [3 marks] Show that the generating functional can be written as

Z[J, η, η] = exp

[
i

∫
d4xLint

(
1

i

δ

δJ(x)
, i

δ

δη(x)
,
1

i

δ

δη(x)

)]
Z0[J, η, η] , (2)

where Z0 is the generating functional for the free theory.

(ii) [9 marks] We have

Z0[J, η, η] = Z0[0, 0, 0] exp

(
i

2

∫
d4xd4yJ(x)∆(x− y)J(y)

)
exp

(
i

∫
d4wd4zη(w)SF (w − z)η(z)

)
,

where ∆(x− y) and SF (w − z) are the scalar and fermion propagators, respectively.
Consider in (2) the action of the O(g2) term in the expansion of ei

∫
d4xLint on Z0.

Show that the contribution this gives to the connected scalar two–point correlation
function is

〈0|Tφ(xa)φ(ya)|0〉O(g2) = g2
∫

d4xd4y∆(xa − x)∆(ya − y)Tr [S(x− y)S(y − x)]

where the trace is over the spinor indices.

(iii) [2 marks] The above expression corresponds to the connected single fermion loop
correction to the scalar two–point correlation function. How would it change if the
fields ψ, ψ were real scalars? [No explicit calculation is required].

(b) (i) [8 marks] Determine the form of the ghost Lagrangrian for the case of a non–abelian
gauge theory with the choice of gauge fixing function

f(Aa) = nµAaµ − σa(x) ,

for arbitrary 4–vector n, which is appropriate for the axial gauge. By performing
a path integral over σ, weighted by the function exp[− i

2ξ

∫
d4xσaσa], determine the

corresponding gauge fixing Lagrangian term.

(ii) [3 marks] The light cone gauge is a special case of the axial gauge, with ξ = 0 and
n2 = 0. In this gauge, the gluon propagator is given by

i∆̃µν
ab (p) =

i

p2 + iε

(
gµν − nµpν + nνpµ

(n · p)

)
δab .

Using the result from part (i), show that the contribution from ghost fields vanishes
in this gauge.
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3. (a) Consider the following Lagrangian

L =
1

2
(∂µφ1∂

µφ1 + ∂µφ2∂
µφ2)+

1

2
µ2(φ21+φ22)−

1

4
λ(φ21+φ22)

2+iψ�∂ψ−gψ(1φ1+iγ5φ2)ψ ,

where φ1,2 are real scalar fields and ψ is a Dirac fermion, while the parameters µ2, λ > 0
and 1 is a unit matrix in spinor space.

(i) [2 marks] Show that
exp(iαγ5) = 1 cosα+ iγ5 sinα .

(ii) [5 marks] We require that this Lagrangian be invariant under the global symmetry

ψ → exp

(
−i1

2
αγ5

)
ψ ,

where α is a real parameter. Show that this implies the scalar doublet φ = (φ1, φ2)
must obey a global SO(2) symmetry with rotation angle α. [You may find the result
from part (i) useful].

(iii) [2 marks] Verify that the entire Lagrangian is indeed invariant under this combined
symmetry of the φ and ψ fields. Would a mass term for the Dirac field preserve this
symmetry?

(iv) [5 marks] Show that the ground state, determined from the minimum of the po-
tential V (φ1, φ2), breaks the above symmetry spontaneously. Expanding around a
conveniently chosen vacuum–expectation value v, show that the fermion acquires a
mass, and determine its value in terms of the coupling g and v.

(v) [3 marks] Determine the masses of the remaining scalar bosons in the theory, and
any new interaction vertices that have been introduced by this symmetry breaking.
[The γ5 matrix obeys γ†5 = γ5, γ

2
5 = 1 and {γ5, γµ} = 0.]

(b) The Lagrangian describing a spontaneously broken abelian gauge theory has the form

L = (Dµφ)∗Dµφ− V (φ)− 1

4
FµνFµν + Lgf ,

where in the general Rξ gauge

Dµφ =
1√
2

[(∂µh+ gbAµ) + i(∂µb− g(v + h)Aµ)] ,

Lgf = − 1

2ξ
(∂µA

µ)2 + gvAµ∂
µb− 1

2
ξg2v2b2 ,

for real scalar fields b and h.

(i) [6 marks] Determine the mass of the gauge boson and compute the gauge boson
propagator in this gauge.

(ii) [2 marks] Identify the form of the propagator for the b field. Determine the behaviour
of this field in the ξ →∞ limit.

A15272W1 Page 5 of 5 End of Last Page


