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1. Magnetohydrodynamics.

(a) [4 marks] State the equations of ideal, incompressible magnetohydrodynamics (“iMHD”)
and explain under what physical and mathematical assumptions they are valid.

(b) [5 marks] Show that these equations can be rewritten as the following closed set describing
the evolution of the velocity field u and the Maxwell tensor Mij = BiBj , where B is the
magnetic field (in velocity units):

∂ui
∂t

+ uj
∂ui
∂rj

= − ∂p
∂ri

+
∂Mij

∂rj
, (1)

∂Mij

∂t
+ un

∂Mij

∂rn
= Mnj

∂ui
∂rn

+Min
∂uj
∂rn

. (2)

Here t is time, r is position, and summation over repeated indices is implied. How is the
pressure p determined?

(c) [2 marks] Imagine that there is no mean magnetic field, and that the iMHD medium
is static and filled with chaotically tangled magnetic fields that are constant in time.

Denote their Maxwell tensor M
(0)
ij . What equation must M

(0)
ij satisfy in order for such an

equilibrium to exist? What is the physical meaning of this equation?

(d) [2 marks] Assume that these fields have a characteristic scale that is no larger than ` and
are statistically isotropic, so that, if we introduce an average (denoted by angle brackets)
over scales of order `, then

〈M (0)
ij 〉 = v2Aδij , (3)

where vA is a constant. Find this constant in terms of the mean square magnetic field 〈B2〉.
(e) [9 marks] Consider infinitesimal perturbations δui and δMij around this equilibrium and

assume that they vary in space on scales much longer than `, viz.,

〈ui〉 = 0 + δui � vA, 〈Mij〉 = 〈M (0)
ij 〉+ δMij , δMij � v2A. (4)

Ignore any possible perturbations of ui and Mij on scales ` or smaller. Show that δui
and δMij will be propagating waves, derive their dispersion relation and also the rela-
tionship between δMij and the fluid-displacement vector associated with δui. These are
called magnetoelastic waves. Comment on their physical nature, their similarity with or
difference from Alfvén waves.

(f) [3 marks] The ideal iMHD equations written in the form of (1) and (2) are mathematically
similar to the equations describing certain kinds of polymer-laden fluids. What property
of the magnetic fields is not shared by polymer strands in a fluid—and what property of
the latter is not shared by the former? If equation (2) were extended to include dissipative
effects, how would these differences manifest themselves, physically and mathematically?
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2. Complex Fluids.

This question concerns Stokes flow around spheres of radius a moving in an unbounded volume
of incompressible fluid with viscosity µ.

(a) [10 marks] Show that the flow

p(x) =
3µa

2

U · x
r3

, u(x) = U
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+
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4r3
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4
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r5

)
,

with r = |x| satisfies the boundary condition(s) required for the flow around a sphere that
is translating with velocity U, and whose centre is instantaneously located at x = 0.

Show that the drag force on the sphere can be computed by integrating a component of
the stress σ over a large sphere centred at x = 0, and hence show that the drag force is
F = −6πµaU.

(b) [4 marks] Suppose the centre of the sphere is now at r1, and the sphere is subjected to
an external force F1. Show that the flow far from the sphere is given at leading order by

u(x) =
1

8πµ r

(
I + r̂ r̂

)
· F1,

where r = x− r1, r = |r|, r̂ = r/r is a unit vector, and I is the identity matrix.

(c) [11 marks] Consider two spheres of radius a with centres at r1(t) and r2(t) joined by a
Hookean spring with spring constant H. The spheres are separated by a distance much
larger than a. The surrounding fluid is flowing with velocity u(r) = L r for some constant
matrix L, plus disturbances due to the spheres.

By writing the fluid velocity evaluated at the centres of the two spheres as u(ri, t) = L ri + u′
i

for i ∈ {1, 2}, where u′
1 is the perturbation to the flow created by sphere 2 evaluated at

the centre of sphere 1, and vice versa, or otherwise, show that the centre 1
2(r1 +r2) moves

with the velocity of the undisturbed background flow, and that the separation R = r1−r2
evolves according to

Ṙ = LR− 2H

ζ

(
I− ζ

8πµR

(
I + R̂R̂

))
·R,

where R = |R| and R̂ = R/R. Determine the constant ζ.

Verify that the additional interaction between the two spheres due to their finite radii is
proportional to a/R.
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