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1. Consider mass m spinless bosons in three dimensions in an applied potential V (r). Suppose
N identical such bosons are in the same potential and the bosons interact via a two-body
repulsive potential U(r − r′) = U0 δ(r − r′), with δ being the three-dimensional Dirac delta
function and U0 > 0.

(a) Using canonical creation operators ψ̂†(r) and annihilation operators ψ̂(r) such that
[ψ̂(r), ψ̂†(r′)] = δ(r− r′), write the Hamiltonian for this system in second quantized notation.
A detailed derivation is not required. [3]

(b) Given an orthonormal complete basis of single-particle orbitals φn(r), consider corre-

sponding creation operators â†n which create bosons in the orbitals φn where [ân, â
†
m] = δnm.

Express the field operator ψ̂†(r) in terms of the â†n. [3]

Now consider the case where the potential V (r) is a symmetric double-well potential (V (x, y, z) =
V (−x, y, z) and there are minima of V at positions x = ±d, y = 0, z = 0). For a single boson
in this potential, the ground state orbital φ0 with energy E0 and the first excited state orbital
φ1 with energy E1 can be accurately approximated as

φ0(r) = [ϕL(r) + ϕR(r)] /
√
2

φ1(r) = [ϕL(r)− ϕR(r)] /
√
2

where ϕL(r) and ϕR(r) are two real normalized orthogonal orbitals localized near the minimum
of the left and right wells respectively. The two orbitals ϕL,R have extremely small spatial

overlap with each other which you may approximate as zero. Let â†L and â†R be creation
operators for the left and right orbitals.

(c) Approximate ψ†(r) only using â†L and â†R, throwing away all other â†n from the con-
struction of part (b) above. In what limit will this approximation be valid? Show that the
Hamiltonian for the many-boson system can be written in the Bose-Hubbard form

H = −t(â†LâR + â†RâL) + w(n̂2L + n̂2R)− µ(n̂L + n̂R)

where n̂j = â†j âj with j = L,R. Give expressions for the values of the constants t, w and µ.
Hint: you will need the fact that ϕL and ϕR have no spatial overlap. [9]

(d) Consider a normalized orbital of the form

ϕ(θ,χ)(r) = cos θ ϕL(r) + sin θ eiχϕR(r).

Assuming there are a large number N of bosons in this double-well potential at low tempera-
ture, write a normalized many-body trial wavefunction which would correspond to condensing
all of the bosons in the orbital ϕ(θ,χ). Calculate the expectation value of the Hamiltonian in
this trial state as a function of θ and χ. What values of θ and χ give the lowest energy? [5]

(e) Show that
∂

∂χ
⟨H⟩ = i⟨[H, n̂L]⟩

where the expectations are taken in the trial wavefunction ϕ(θ,χ). Give a physical interpretation
of this equality. [5]
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2. Consider a gas of N interacting spinless fermions of mass m in two dimensions at zero tem-
perature.

(a) Assuming the system starts in the ground state, calculate the total energy change of
the system if we boost the Fermi surface by momentum p0 in the x̂ direction. [3]

(b) Due to interactions, the energy ϵp of a single quasiparticle with momentum p near the
Fermi surface is renormalized to

ϵp − µ ≈ (pF /m
∗)(|p| − pF )

with m∗ being the effective mass, pF the Fermi momentum and µ the chemical potential.
Calculate the density of states for these quasiparticles near the Fermi surface. [4]

(c) We can assume that the quasiparticle density n(p) is a step function in every direction,
but we allow for the position of the step to depend on the angle θp of the momentum p

n(p) = Θ( |p| − pF − ν(θp) )

where Θ(x) = 1 for x < 0 and Θ(x) = 0 otherwise. Here ν(θ) is a function that tells us how the
Fermi surface shape has been deformed, where ν(θ) = 0 in the ground state. What is the form
of ν(θ) if we boost the entire Fermi surface by a very small momentum p0 in the x̂ direction? [3]

Following the Landau Fermi-liquid approach we write a free-energy functional for the system
as follows

F = F0 +
∑
p

[ϵ(p)− µ] δn(p) +
1

2

∑
p,p′

f(θp − θp′) δn(p) δn(p′)

where δn(p) = n(p)−n0(p) is the change in occupancy of the momentum p quasiparticle state
compared with its occupancy in the ground state and f(θ) = f(−θ) is a phenomenological
interaction function.

(d) Explain briefly why the form of the Landau Fermi-Liquid functional is sufficient to
describe all low energy processes. (Your answer should be a short paragraph or less.) [5]

(e) Explain how m and m∗ are related by the free-energy functional. Substitute the form of
ν(θ) from part (c) into the Landau free-energy functional to derive the energy cost of a boost.
Compare this expression to the result of sections (a) and (b) to derive an explicit relationship
between f,m,m∗, and the quasiparticle density of states. [10]
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