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1. The Lagrangian for a real scalar field ϕ in 2 dimensions (one space plus time) is given by

L =
1

2
(∂tϕ)

2 − 1

2
(∂xϕ)

2 − 1

2
m2ϕ2 − V (ϕ).

(a) [5 marks] In the case V (ϕ) = g4
4! ϕ

4 , give the momentum space Feynman rules and explain
briefly their origin.

(b) [4 marks] Draw the Feynman diagram for the one loop correction to the two point function
and evaluate it.

(c) [7 marks] In a renormalization scheme wherem is the pole mass, write down the definition
of the mass counter-term δm, and evaluate it to one loop. Explain why there is no
δZ∂µϕ∂

µϕ counter-term, and why a ϕ4 counter-term is not required at one loop.

(d) [6 marks] Show that the superficial degree of divergence of a diagram with V vertices is
given by ω = 2(1 − V ). Hence show that in fact no further counter-term contributions
are generated at any order in perturbation theory.

(e) [3 marks] How would your results change if V (ϕ) = g4
4! ϕ

4 + g6
6! ϕ

6?

[
You may assume that

∫ Λ d2p

(2π)2
1

p2 −m2 + iϵ
=

−i
4π

log

(
Λ2

m2
+ 1

)]

2. The Lagrangian density for a system in four space-time dimensions consisting of two complex
scalar fields Φ, ϕ of masses M,m is given by

L = ∂µΦ
†∂µΦ+ ∂µϕ

†∂µϕ−M2Φ†Φ−m2ϕ†ϕ− g

2
(ϕ2Φ† + c.c.).

(a) [5 marks] What is the internal symmetry of L? Find the corresponding conserved current
and explain its physical significance.

(b) [4 marks] Write down the Feynman rules, taking care to show the flow of quantum num-
bers.

(c) [9 marks] Draw the tree-level Feynman graphs for:

i) scattering of two ϕ particles;

ii) scattering of a ϕ particle and its antiparticle.

Write down the matrix elements for these two processes. Assuming that M ≫ m find the
ratio of the total cross-sections in the limit of low momentum scattering (i.e. all external
momenta satisfy |p| ≪ m). Why is this calculation incorrect if s ≈M2?

(d) [7 marks] Draw the lowest order Feynman graphs for:
i) scattering of two Φ particles;
ii) scattering of a Φ particle and its antiparticle.
Find approximate expressions for these matrix elements that are valid when |p| ≪M ≪
m, and give their leading dependence on g and m. [It is not necessary to do a detailed
calculation for this part.]
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3. Define the matrices

γ0 =

(
1 0
0 −1

)
, γ1 = i

(
0 1
1 0

)
, γ2 = i

(
0 −i
i 0

)
and the tensor ηµν = diag(1,−1,−1), where µ, ν = 0, 1, 2.

The action for a massive two component fermion in three dimensions (one time and two space)
is given by

S =

∫
d3xψ(iγµ∂µ −m)ψ

where ψ ≡ ψ†γ0.

(a) [3 marks] Show that the matrices γ0, γ1, γ2 satisfy the relationship

γµγν + γνγµ = 2ηµν .

(b) [4 marks] Explain carefully why the spatial inversion operation P in two space dimensions
is (x, y) → (−x, y), whereas in three space dimensions it is (x, y, z) → (−x,−y,−z).

(c) [6 marks] Under P the field ψ obeys the transformation law ψ(t, x, y) → ψ′(t, x, y) =
γ1ψ(t,−x, y). Show that the kinetic term of the action S is invariant under P , but that
the mass term changes sign.

(d) [6 marks] Under the time inversion operation T the field ψ obeys the transformation law
ψ(t, x, y) → ψ′(t, x, y) = γ2ψ(−t, x, y), and iγµ∂µ → (iγµ∂µ)

∗, where ∗ denotes complex
conjugate. Find the action of T on the action S and hence show that S is invariant under
TP .

(e) [6 marks] The action of the C operation on ψ is ψ(t, x, y) → ψ′(t, x, y) = Γψ(t, x, y)∗.
Find Γ such that S is invariant under C.
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