Department of Physics and Mathematical Institute

Examination Conventions 2023-2024

Master's in Mathematical and Theoretical Physics (MMathPhys)

MSc in Mathematical and Theoretical Physics (MScMTP)

1 Introduction

This document sets out the examination conventions for the Master's in Mathematical and Theoretical Physics (MMathPhys) and the MSc in Mathematical and Theoretical Physics (MScMTP) in accordance w ith the regulations for these courses. This document explains how work will be marked and how the final degree classification will be derived from these marks.

2 General Structure of the Examination

All courses in this programme either have a component of formal assessment—through written invigilated exams, take-home exams, or mini-projects—or a homework completion requirement. Some courses may be offered with a combination of formal assessment and homework requirement. Any course with a component of formal assessment will be referred to as a formally assessed course. The tables in Appendix A specify which courses are formally assessed and by which method, and it indicates which courses have a homework completion requirement.

Students are required to undertake at least ten units within the programme, where one unit normally corresponds to a 16-hour lecture course. This means that a 16-hour lecture course counts as one unit, while, for example, a 24-hour lecture course counts as 1.5 units. More specifically, students are required to offer:

- (a) at least four units that are assessed by written invigilated exams;
- (b) at least three further units that are assessed by written invigilated exams or other formal assessment (see section 3);
- (c) at least three other units (which may be from courses with homework completion requirement only or from formally assessed courses, including those with written invigilated examinations).

A dissertation replaces one—in the case of an extended dissertation, two—of the units in (b) or (c). There are no other formal constraints on course choices and students are otherwise free to design their own pathways (although paying close attention to the guidance offered is strongly recommended). Please note that it is a student's responsibility to ensure that she/he fulfils the requirements for the overall number of units and the number of formally assessed units offered and completed.

3 Assessment Types

Formally assessed courses will be assessed by one or more of the following means:

- invigilated written examinations;
- "take-home" examinations;
- mini-projects;
- a dissertation.

The modes of assessment for all courses will be published at the beginning of each academic year and are detailed in Appendix A.

Certain lecture courses offered within the MMathPhys/MScMTP are Part B or Part C courses within the MMath programme. The examinations for these courses are the responsibility of the Part B or Part C Mathematics Examiners and follow the rules set out in the *Part B* or *Part C Mathematics Examination Conventions 2023-2024*. Part B courses are only allowed in exceptional circumstances; students taking Part B papers at the level of the MMathPhys/MScMTP will be required to complete additional work to bring them up to the level of a Part C course.

3.1 Invigilated Written Examinations

The duration of written examinations will normally be 1.5 or 2 hours for a 16-hour lecture course and 3 hours for a 24-hour lecture course. Examination papers will typically consist of three (four) questions for 16-hour (24-hour) lecture courses, each worth 25 marks. The date of each exam and the structure of the paper are provided in the tables in Appendix A.

The questions set will, as a whole, be fairly spread across the syllabus. Questions will typically begin by examining material explicitly covered in the course, followed by a part which tests understanding.

Written examinations will be marked by a single assessor according to pre-agreed model solutions and marking schemes. The examination scripts will then be checked by an independent checker to ensure that all work has been marked, and that the marks have been correctly totalled and recorded.

The use of handheld pocket calculators is generally not permitted but certain kinds may be permitted for some papers. Specifications of which papers and which types of calculator are permitted for those exceptional papers will be announced by the examiners in the term preceding the examination.

3.2 Take-Home Examinations

Some courses will be assessed, or partially assessed, by take-home exams. These are written examinations which students are expected to complete at home over a 48 hour period. Students are allowed to use books, but must not discuss the exam with anybody else. Take-home exams will normally be marked by a single assessor, according to pre-agreed model solutions and marking schemes. The examination scripts are then checked by an independent checker to ensure that all work has been marked, and that the marks have been correctly totalled and recorded.

3.3 Mini-Projects

Mini-projects are normally set by the course lecturer. Mini-projects set for courses in MT or HT will be released to candidates near the end of term (often Monday, week 8 of term), and the submission deadline will several weeks later (often Monday, week 11 of that same term). For the course in Advanced Philosophy of Physics, the mini-project shall comprise two essays of at most 5,000 words each. A list of approved essay topics will be released on or before Friday of week 4 of Hilary Term. Students may apply for approval for their own topics following the procedure specified in the Exam Regulations for the Honour School of Physics and Philosophy. Any such application must be received no later than Friday of week 6 of Hilary Term. Essays must be submitted by noon on Friday of week 4 of Trinity Term. The regulations for preparation and submission of the essays are otherwise identical to those governing essays for other Philosophy subjects in Part C, as specified in the Special Regulations for Philosophy in all Honour Schools involving Philosophy.

Mini-projects will be double-blind marked, normally by the course lecturer and one other assessor. The marks of the two assessors will be reconciled following the standard procedure detailed in Appendix B. The exception to this is that mini-projects which have pre-agreed model solutions and marking schemes will be marked by a single assessor. The mini-projects will then be checked by an independent checker to ensure that all work has been marked, and that the marks have been correctly totalled and recorded.

3.4 Courses with a Homework Requirement

Some courses require that homework is completed to a certain standard in order to complete the course. There are three types of such courses:

- courses with formal assessment (an invigilated written examination, a "take-home" examination, or a mini-project) **and** a homework component that needs to be completed,
- courses with formal assessment (an invigilated written examination, a "take-home" examination, or a mini-project) **or** a homework component that needs to be completed, and
- courses without formal assessment (mostly certain advanced courses taught in HT and TT) but with a requirement for homework completion.

This sub-section describes homework completion requirements for these three types of courses. Note that courses from Part B or Part C of the MMath or MPhys programmes do not have a homework completion requirement. The tables in Appendix A indicate the assessment method for every course and whether or not the course has a homework completion requirement.

The homework for all courses with a homework requirement will be assigned by the lecturer of the course. Each homework will be marked by a teaching assistant (TA) based on solutions provided by the lecturer. Some of the courses will be accompanied by classes led by tutors in order to discuss the homework assignments. The homework problems will be marked using a letter system A/B/C for problems solved or attempted competently (A for excellent, B good, C fair), and F for those problems which are not handed in or, if attempted, show insufficient understanding of the concepts taught in the lectures. The TA will record the mark of each problem and return the marked scripts as promptly as possible. The students receive feedback on their solutions from the class tutor, whenever there is one, or from the marking by the TA who sometimes may choose to leave constructive comments on the script.

The homework requirement for a course has been completed if 50% of each problem sheet assigned has a mark A/B/C. Otherwise the homework requirement has not been completed.

Examiners will make the final decision as to whether or not each student has completed the homework requirement for a unit.

The purpose of homework is to gain practical experience and familiarity with the material and it is an essential part of the course. The threshold for homework completion is deliberately set at a low level so that the engagement with the materials takes place in a low-pressure and low-stakes context. However, there is no implication that only 50% of the work should be attempted. On the contrary, we strongly urge students to seriously attempt all problems sets and all questions.

Each homework will have a submission date. Late homework will only be accepted in exceptional circumstances. Students who fall ill or have an emergency which prevents them from handing in their homework on time should contact their lecturer as soon as possible. For those courses accompanied by classes which discuss the homework assignments, homework submitted after a student has attended the class will not be accepted. The course handbook provides further details on the procedure to follow if you are unable to meet the submission date for homework, and the procedure to follow if you wish to make a complaint.

3.5 Penalties for Non-attendance

Rules governing non-attendance at examinations and any consequent penalties are set out in full in the Examination Regulations (Regulations for the Conduct of University Examinations, Part 14). If a student will be prevented by illness or other urgent cause from attending one of their examinations they should contact their college office or college advisor as soon as possible.

Any case of non-attendance at an examination involving illness or other medical condition will require written medical evidence and will usually be referred by the college to the Proctors. If the Proctors do not believe there are satisfactory reasons for non-attendance, or an application to the Proctors has not been submitted, a candidate will be awarded a mark of zero for that examination.

For Part C students (MMathPhys students), failure to submit a required element of assessment or to attend a required examination without an accepted reason will result in failure of the entirety of Part C (MMathPhys). For MSc students, failure to submit a required element of assessment or to attend a required examination without an accepted reason will result in the failure of that assessment item.

4 Dissertation

Each dissertation will be offered and supervised by a dissertation supervisor. Dissertations will normally be marked by the dissertation supervisor and blind-marked by one other assessor. The marks of the two assessors will be reconciled following the procedure detailed in Appendix B. A standard dissertation counts for one unit. Subject to permission from the Joints Supervisor Committee, candidates can also opt for an extended dissertation with a wider scope which will count for two units.

The assessors of a dissertation that, in their view, shows particular originality and/or insight may recommend to the Examiners that this dissertation be given a commendation.

The submission deadline for dissertations is noon on Monday, week 6 of Trinity Term.

5 Penalties for Late Submission or Non-Submission

Rules governing late submission and any consequent penalties are set out in full in the *Late submission* and non-submission of a thesis or other written exercise subsection of the Regulations for the Conduct of University Examinations section of the Examination Regulations 2023.

Candidates prevented by illness or other urgent causes from submitting a dissertation, a take-home exam, or a mini-project on time should ask their college to submit an application for an extension to the Proctors on their behalf. If the Proctors grant permission to submit work late under clause 1 of paragraph 14.7 (Examination Regulations), no penalty will be applied.

Work submitted late without prior permission may still be accepted for assessment under paragraph 14.9 or 14.10 (Examination Regulations), but the Examiners may apply a penalty of a reduction in the mark for the work (see the table below). Candidates are advised to inform their college advisor or their college's Tutor for Graduates of any mitigating circumstances as soon as possible so that the college can make an application to the Proctors if appropriate.

Lateness	Penalty, % point reduction
Up to 4 hours	1 %
4-24 hours	10%
24–48 hours	20%
48–72 hours	30%
72 hours - 14 days	35%
More than 14 days late	Fail

Table 1: Late Submission Tariff for Dissertations, Mini-Projects, and Take-Home Exams

The penalty will be a percentage reduction of the maximum total mark available for the work so, for example, in the case of a 10% penalty, 10 University standardised Marks (USMs) would be deducted. The final mark awarded after application of the penalty cannot be below 0. Penalties will only be applied after the work has been marked and the Exam Board has checked whether there are any valid reasons for late submission.

6 Plagiarism

Candidates are reminded of the importance of avoiding any suspicion of plagiarism, please see http://www. ox.ac.uk/students/academic/guidance/skills/plagiarism for further guidance. Depending on their severity, cases of suspected plagiarism may be referred to the Proctors for investigation or may be dealt with by the board of examiners. If dealt with by the board of examiners as a case of poor academic practice, the examiners may deduct marks (for lack of adequate referencing, poor use of citation conventions, *etc*) of up to 10% of the marks available for the assessment. Where the consequence of the marks deduction would result in failure of the assessment and of the programme the case must be referred to the Proctors.

7 Analysis of Marks

The Examiners will assign USMs for each unit of assessment undertaken by a student and may rescale the raw marks in order to arrive at the USM reported to students. When considering whether to scale the raw marks for a particular unit, the Examiners will take into consideration:

- the relative difficulty of the unit compared to the other units in the programme;
- the report submitted by the assessor who set and marked the unit.

The board of Examiners will use their academic judgement to ensure that appropriate USMs are awarded and may use further statistics to check that the marks assigned fairly reflect the candidates' performances. It is expected that scaling will be achieved by a piecewise linear mapping of the percentage class boundaries onto the USM scheme.

8 MMathPhys/MScMTP Degree Classification

Outcomes for all courses with assessment will be published as USMs. The object of the USMs is to allow direct comparison between the results of examinations in different subjects. Qualitative descriptors for levels of performance characterised by ranges of USMs are given in Section 8.1.

A course with formal assessment is considered completed if the USM of the course is $\geq 50\%$ and if any homework requirement has been completed. A course with no formal assessment is considered completed if the homework requirement has been completed.

The overall \overline{USM} is calculated as described in Appendix C. The overall MMathPhys/MScMTP degree classification is as follows:

- A *Distinction* will be awarded if all of the following conditions are satisfied.
 - i) The candidate offers at least 10 units. These must contain at least 7 formally assessed units of which at least 4 units have a written invigilated exam.
 - ii) At least 10 units have been completed. In exceptional circumstances, the examiners may relax this requirement.
 - iii) $\overline{USM} \ge 70$.
- A *Merit* will be awarded if all of the following conditions are satisfied.
 - i) The candidate offers at least 10 units. These must contain at least 7 formally assessed units of which at least 4 units have a written invigilated exam.
 - ii) At least 9 units have been completed. In exceptional circumstances, the examiners may relax this requirement.
 - iii) $\overline{USM} \ge 65$.
 - iv) The candidate does not qualify for a distinction.
- A Pass will be awarded if all of the following conditions are satisfied.
 - i) The candidate offers at least 10 units. These must contain at least 7 formally assessed units of which at least 4 units have a written invigilated exam.

- ii) At least 8 units have been completed. In exceptional circumstances, the examiners may relax this requirement.
- iii) $\overline{USM} \ge 50.$
- iv) The candidate does not qualify for a merit or distinction.
- A candidate not meeting any of the above will be deemed to have *Failed*.

The Examiners will use their academic judgement to ensure a fair outcome for all candidates, and to produce a consistent ranked list of candidates according to the classification scheme above.

Master of Mathematical and Theoretical Physics: A student on the Master's in Mathematical and Theoretical Physics course who satisfies the Examiners may supplicate for the degree of Master of Mathematical and Theoretical Physics with the above associated classification; additionally their transcript will show the classification for Parts A and B as previously assigned by the Part B Examiners in the subject in which he or she sat those parts.

MSc in Mathematical and Theoretical Physics: A student on the MSc in Mathematical and Theoretical Physics course who satisfies the Examiners may supplicate for the degree of MSc in Mathematical and Theoretical Physics with the above associated classification.

8.1 Class Descriptors

Qualitative class descriptors for the levels of performance are summarised below.

- **Distinction**: High quality work throughout the course. The candidate shows excellent knowledge of the material over a wide range of topics. The criteria for USMs in the distinction band are:
 - 90-100: The candidate shows remarkable ability and true insights. Dissertations in this band will be worthy of publication.
 - 80-89: The candidate shows outstanding problem-solving skills and outstanding knowledge of the material over a wide range of topics, and is able to use that knowledge innovatively and/or in unfamiliar contexts.
 - 70-79: The candidate shows excellent problem-solving skills and excellent knowledge of the material over a wide range of topics, and is able to use that knowledge innovatively and/or in unfamiliar contexts.
- Merit: 65-69. The candidate shows very good problem-solving skills, and very good knowledge of much of the material over a wide range of topics.
- **Pass**: The pass covers a wide range of results from candidates who show adequate knowledge of most of the material, to candidates who show good knowledge of much of the material over a wide range of topics. The criteria for USMs in the pass band are:
 - 60-64: The candidate shows good problem-solving skills, and good knowledge of much of the material over a wide range of topics.
 - 50-59: The candidate shows basic problem solving skills and adequate knowledge of most of the material.

- Fail: The candidate shows an inadequate grasp of the basic material. Candidates may have shown some understanding but the majority of work is likely to show major misunderstanding and confusion, and/or inaccurate calculations.
 - 40-49: The candidate shows reasonable understanding of at least part of the basic material and some problem solving skills. Although there may be some good work, the majority of work will contain errors in calculations and/or show incomplete understanding of the topics.
 - 30-39: The candidate shows some limited grasp of basic material over a restricted range of topics, but with large gaps in understanding. There need not be any good quality work, but there will be indications of some competence.
 - 0-29: The candidate shows an inadequate grasp of the basic material. The work is likely to show major misunderstanding and confusion, and/or inaccurate calculations.

9 Alternative Arrangements

Students with special examination needs (for example Specific Learning Difficulties) may apply to the Proctors through the Senior Tutor of their colleges:

- for alternative examination arrangements relating to their conditions, and/or
- for the condition to be taken into account by the Examiners as a special factor which may affect their performance in examinations.

Further details on the general rules can be found in the University Examination Regulations and at http: //www.ox.ac.uk/students/academic/exams/arrangements.

9.1 Resits

A candidate who fails to satisfy the Examiners may retake the examination on at most one subsequent occasion. This resit attempt shall normally be taken at the next opportunity, but may be deferred once, *i.e.*, it must be taken at one of the next two opportunities. In such a case the examiners will specify at the time of failure which components of the examination may or must be redone, and the student will not be eligible for a merit or distinction on the whole course. Where a course is no longer being offered in the year of the resit, the Examiners will be responsible for arranging provisions. No student who has satisfied the examiners in the examination may enter again for the same examination. For more information, please see Part 14 of the Examination Regulations.

An MMathPhys candidate who resits a unit for which a technical fail mark was originally awarded (a unit for which no work was submitted or a written examination was missed) will have that paper assessed on its merits.

An MSc candidate who resits a unit for which a technical fail mark was originally awarded (a unit for which no work was submitted or a written examination was missed) will have the mark for that unit capped at 50.

9.2 Mitigating Circumstances Notices to Examiners

The board of Examiners will use the following procedure for the consideration of medical and other special circumstances transmitted to them via the Examinations and Assessments Section:

- (a) A subset of the board will meet to discuss the individual applications and band the seriousness of each application on a scale of 1-3 with 1 indicating minor impact, 2 indicating moderate impact, and 3 indicating very serious impact. When reaching this decision, Examiners will take into consideration the severity and relevance of the circumstances, and the strength of the evidence. Examiners will also note whether all or a subset of papers were affected, being aware that it is possible for circumstances to have different levels of impact on different papers.
- (b) The banding information will be used at the final board of Examiners meeting to adjudicate on the merits of candidates.
- (c) A brief, formal record will be kept confirming (i) the fact that information about special circumstances has been considered by the Examiners, (ii) how that information has been considered, and (iii) the outcome of the consideration with the reasons for the decisions reached.

Further information on how to make an application for consideration of mitigating circumstances in an examination is available at http://www.ox.ac.uk/students/academic/exams/guidance.

10 Formative Feedback

Students will receive feedback on non-examined work through comments on the problem sheets they complete for the classes accompanying lecture courses. Specifically, homework courses will normally have homework assignments which are marked, returned to the students, and discussed in exercise classes.

11 Examiners for 2023-2024

The internal Examiners are:

Prof Christopher Beem (Chair), Prof Alex Schekochihin, Prof John Magorrian, and Prof Mark Mezei.

The external Examiners are:

Prof Martin Evans, Professor of Statistical Physics, University of Edinburgh; Prof Toby Wiseman, Professor of Theoretical Physics, Imperial College London.

Candidates must not make direct contact with the Examiners regarding any matter relating to examinations. Any communication must be via the Senior Tutor of the respective candidate's college or the Director of Studies, who will, if appropriate, contact the Proctors. The Proctors in turn communicate with the Chair of Examiners.

Results from the January exams will be released after the exam board meeting in Hilary Term (week 3, 4, or 5). Results from the Easter vacation assessments and end of Trinity exams will be released along with the final classifications in July.

Appendices

A Assessment Methods by Course 2023–24

Michaelmas Term

Unit	Assessment	Assessment	Assessment	Submission	Homework	Units
	Method	Instruction	Date	Deadline	Requirement	
Advanced Quantum	2h inv. exam	answer 2	week 6–8 TT	N/A	no	1.25
Theory		questions				
Advanced Philosophy of	mini-project or	N/A	titles released	12:00 Friday	yes for unassessed	1.5
Physics	no formal assessment		by Friday week	week 4 TT	option only	
	(homework)		$4 \mathrm{HT}$			
Algebraic Geometry	1.75h inv. exam	best 2 questions	week 6–8 TT	N/A	no	1
		count				
Algebraic Topology	1.75h inv. exam	best 2 questions	week 6–8 TT	N/A	no	1
		count				
Differential Geometry	1.75h inv. exam	best 2 questions	week 6–8 TT	N/A	no	1
		count				
General Relativity I	1.75h inv. exam	best 2 questions	week 6–8 TT	N/A	no	1
		count				
Groups and	3h inv. exam and	answer 3 from 4	week 0 HT	N/A	yes	1.5
Representations	homework required	questions				
Kinetic Theory	3h inv. exam or	answer 3 ques-	week 0 HT	N/A	yes for unassessed	1.75
	no formal assessment	tions			option only	
	(homework)					
Introduction to Topolog-	no formal assessment	N/A	N/A	N/A	yes	1
ical Phases of Matter	(homework)					
Networks	mini-project	N/A	project released	12:00 Thursday	no	1
			12:00 Friday	week 10 MT		
			week 7 MT			
Numerical Linear	1.75h inv. exam	best 2 questions	week 6–8 TT	N/A	no	1
Algebra		count				
Perturbation Methods	1.75h inv. exam	best 2 questions	week 6–8 TT	N/A	no	1
		count				
Quantum Field Theory	3h inv. exam	answer 3	week 0 HT	N/A	no	1.5
		questions				
Quantum Processes in	no formal assessment	N/A	N/A	N/A	yes	0.75

Hilary Term

Unit	Assessment	Assessment	Assessment	Submission	Homework	Units
	Method	Instruction	Date	Deadline	Requirement	
Advanced Fluid Dynam-	2h inv. exam or	answer 2	week 0 TT	N/A	yes for unassessed	1
ics	no formal assessment	questions			option only	
	(homework)					
Advanced Philosophy of	mini-project or	N/A	titles released	12:00 Friday	yes for unassessed	1.5
Physics (continued)	no formal assessment		week 6 HT	week 4 TT	option only	
	(homework)					
Advanced QFT	3h inv. exam	answer 3	week 0 TT	N/A	no	1.5
		questions				
Applied Complex	1.75h inv. exam	best 2 questions	week 6–8 TT	N/A	no	1
Variables		count				
Collisionless Plasma	take-home exam or	N/A	exam release	12:00 Wednes-	yes for unassessed	1
Physics	no formal assessment		12:00 Friday	day week 9	option only	
	(homework)		week 8 TT*	TT*		
Cosmology	no formal assessment	N/A	N/A	N/A	yes	1
	(homework)					
Geometric Group Theory	1.75h inv. exam	best 2 questions	week $6-8$ TT	N/A	no	1
		count				
General Relativity II	1.75h inv. exam	best 2 questions	week 6–8 TT	N/A	no	1
		count				
Geophysical Fluid	2h inv. exam	answer 2	week 6–8 TT	N/A	no	1
Dynamics		questions				
High Energy Density	no formal assessment	N/A	N/A	N/A	yes	1
Physics	(homework)					
Introduction to Quan-	1.75h inv. exam	best 2 questions	week 6–8 TT	N/A	no	1
tum Information		count				
Low Dimensional Topol-	1.75h inv. exam	best 2 questions	week 6–8 TT	N/A	no	1
ogy & Knot Theory		count				
Nonequilibrium Statisti-	no formal assessment	N/A	N/A	N/A	yes	1
cal Physics	(homework)					
Random Matrix Theory	1.75h inv. exam	best 2 questions	week 6–8 TT	N/A	no	1
		count				
Riemannian Geometry	1.75h inv. exam	best 2 questions	week 6–8 TT	N/A	no	1
		count				
Statistical Mechanics and	no formal assessment	N/A	N/A	N/A	yes	1
Computer Algorithms	(homework)					

Hilary Term

Unit	Assessment	Assessment	Assessment	Submission	Homework	Units
	Method	Instruction	Date	Deadline	Requirement	
String Theory I	mini-project	N/A	project released	around 12:00	no	1
			around Mon-	Monday week		
			day week 8	11 HT		
			HT			
Supersymmetry and	no formal assessment	N/A	N/A	N/A	yes	1
Supergravity	(homework)					

*The take-home exam for this course will be released at the same time as the start of the C1 MPhys exam. This is likely to be between Monday and Wednesday of week 8 TT, but the MPhys examination timetable will not be confirmed until the Easter vacation. The precise release date of this exam will therefore be determined at that time.

Trinity Term

Unit	Assessment	Assessment	Assessment	Submission	Homework	Units
	Method	Instruction	Date	Deadline	Requirement	
Collisional Plasma	no formal assessment	N/A	N/A	N/A	yes	1
Physics	(homework)					
Collisionless Plasma	take-home exam or	N/A	exam release	12:00 Wednes-	yes for unassessed	1
Physics (continued)	no formal assessment		12:00 Friday	day week 9	option only	
	(homework)		week 8 TT^*	TT^*		
Conformal Field Theory	no formal assessment	N/A	N/A	N/A	yes	1
	(homework)					
Quantum Field Theory	no formal assessment	N/A	N/A	N/A	yes	1
in Curved Space-Time	(homework)					
Quantum Matter	no formal assessment	N/A	N/A	N/A	yes	1.25
	(homework)					
Renormalisation Group	no formal assessment	N/A	N/A	N/A	yes	1
	(homework)					
String Theory II	no formal assessment	N/A	N/A	N/A	yes	1
	(homework)					
Galactic and Planetary	no formal assessment	N/A	N/A	N/A	yes	1
Dynamics	(homework)					
The Standard Model and	no formal assessment	N/A	N/A	N/A	yes	1
Beyond I	(homework)					
The Standard Model and	no formal assessment	N/A	N/A	N/A	yes	1
Beyond II	(homework)					
Topics in Soft and Active	no formal assessment	N/A	N/A	N/A	yes	0.5
Matter Physics	(homework)					
Advanced Topics in	no formal assessment	N/A	N/A	N/A	yes	0.5
Plasma Physics	(homework)					

B Reconciliation Procedure

The Examiners will follow the procedure below when reconciling marks for assessments which are doubleblind marked.

- 1. The two assessors each read the assessment; the assessors independently write reports and produce preliminary marks.
- 2. If the reports are broadly in agreement and the two assessor marks differ by no more than 10 marks, the Examiners can take the average of the two marks as the provisional mark.
- 3. If (2) does not apply, then the Examiners will ask the assessors to confer on the standard of the work with a view to agreeing a mark. E-mail discussions may be enough in simple cases, providing nothing is said that breaches exam security. The focus will be on identifying the reasons for any difference in the proposed marks. An extreme example might be that X noticed a catastrophic error in the proof of the main theorem, but Y did not spot it.
- 4. If the two assessors agree on a mark under (3), they report the agreed mark to the Examiners, who will normally take the agreed mark as the provisional mark.
- 5. If the two assessors cannot agree under (3), they send a summary of the discussion in (3) to the Examiners. The Examiners will appoint a third assessor who will independently assess the project before receiving the marks from the other assessors. The third assessor will make a recommendation to the Examiners.

C Calculating the overall \overline{USM}

Let $\{c_1, \ldots, c_n\}$ be the set of formally assessed courses a student has offered. For each of these courses c_i , the number of units of the course is denoted by u_i , the number of units assessed by a written invigilated exam by w_i (zero if the course does not have a written invigilated exam) and the USM achieved by m_i . For a subset of these courses, given by an index set $S \subset \{1, \ldots, n\}$, we define the total number of units, |S|, the total number of units with written invigilated exam, ||S||, and the average USM, \overline{S} , of this subset by

$$|S| = \sum_{i \in S} u_i$$
, $||S|| = \sum_{i \in S} w_i$, $\bar{S} = \frac{1}{|S|} \sum_{i \in S} u_i m_i$.

The \overline{USM} is then given by

$$\overline{USM} = \max_{S : |S| \ge 7 \text{ and } \|S\| \ge 4} \left(\overline{S} \right)$$