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1. Consider a system of N indistinguishable particles, each of unit mass. Their positions xi and
velocities vi for i = 1, . . . , N evolve according to

dxi
dt

= vi,
dvi
dt

=
N∑
j=1

K(xi,xj)(vj − vi).

The function K is symmetric and non-negative, K(xi,xj) = K(xj ,xi) ⩾ 0 for all xi and xj .

(a) [4 marks] Show that the total momentum of the system is conserved, and that the kinetic
energy of the system decays according to

d

dt

(
1

2

N∑
i=1

|vi|2
)

= −1

2

N∑
i=1

N∑
j=1

K(xi,xj)|vj − vi|2.

(b) [3 marks] Now consider an ensemble of theseN -particle systems. Write down the Liouville
equation that expresses conservation of the probability density ϱ(x1,v1, . . . ,xN ,vN , t) of
the ensemble in phase space.

(c) [7 marks] Use the Liouville equation and one further assumption to show that the one-
particle distribution function f(x,v, t) evolves according to

∂tf + v · ∇f +∇v · (fL[f ]) = 0, (⋆)

where ∇v · (· · · ) denotes a divergence with respect to v, and the linear operator L is
defined by

L[f ] =

∫
dx⋆

∫
dv⋆K(x,x⋆)(v⋆ − v)f(x⋆,v⋆, t).

All integrals are taken over R3 and you may assume that f decays suitably at infinity.

What additional assumption did you need to derive (⋆)?

(d) [6 marks] Show that

d

dt

(∫
dx

∫
dv

1

2
|v|2f

)
= −

∫
dx

∫
dv

∫
dx⋆

∫
dv⋆K(x,x⋆)|v⋆−v|2f(x⋆,v⋆, t)f(x,v, t),

and that
d

dt

(∫
dx

∫
dv f log f

)
=

∫
dx

∫
dx⋆K(x,x⋆)ρ(x⋆, t)ρ(x, t).

Give an expression for the fluid density ρ, and also give a physical interpretation of the
signs of the expressions on the right-hand sides.

(e) [5 marks] Show that the momentum density ρu evolves according to

∂t(ρu) +∇ ·Π =

∫
dx⋆K(x,x⋆)

(
u(x⋆, t)− u(x, t)

)
ρ(x⋆, t)ρ(x, t).

Give expressions for the fluid velocity u and momentum flux Π, and find an evolution
equation for the fluid density ρ.
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2. Consider a plasma consisting of spin-1/2 fermions deep in the range of temperatures where the
gas is degenerate (examples of such situations are electron plasmas in metals or electron-hole
plasmas in semiconductors; if you are unfamiliar with spin-1/2 fermions and/or Fermi-Dirac
statistics, it does not matter, all the information about them that you will need to solve this
question is provided below). The distributions of all species α (α = e or i denoting electrons
or ions, respectively), in such a plasma can be approximated as completely degenerate, viz.,

f0α(v) =
1

4

(mα

ℏπ

)3
H(vFα − v), (1)

where v is the velocity variable in three dimensions, mα is the mass of the particles of species α,
mαv

2
Fα/2 is their Fermi energy, vFα = (3π2nα)

1/3ℏ/mα, and nα =
∫
dvf0α(v) is their mean

number density. H(x) is the Heaviside function, equal to 1 if x ⩾ 1 and to 0 otherwise. Note
that H ′(x) = δ(x) (the Dirac delta).

(a) [7 marks] The dispersion relation that determines the complex increment p for the time
evolution of linear perturbations in an electrostatic plasma is

ϵ(p,k) = 1−
∑
α

ω2
pα

k2
i

nα

∫
dv

1

p+ ik · v
k · ∂f0α

∂v
= 0, (2)

where ωpα = (4πq2αnα/mα)
1/2 is the plasma frequency of species α, k is the wavenumber

of the perturbation, and the integral with respect to the velocity component parallel to
k is along the Landau contour. Let ω be the real frequency of the perturbation, and
assume that ω > kvFe and me ≪ mi. Show that if the damping rate is either zero or
small compared to the frequency ω, then the latter satisfies the following equation:

1 +
3ω2

pe

k2v2Fe

[
1 +

ω

2kvFe
ln

(
ω − kvFe
ω + kvFe

)]
= 0. (3)

(b) [3 marks] Do you expect these waves to be Landau-damped? If yes, explain how the rate
of this damping should be determined. If not, explain why not.

(c) [5 marks] In the long-wavelength limit kλDe ≪ 1, where λDe =
√
3vFe/ωpe is the Debye

length, derive the expression for the frequencies of Langmuir waves in a degenerate plasma,
including the lowest-order dispersive (i.e., k-dependent) term.

(d) [5 marks] In the short-wavelength limit kλDe ≫ 1, show that the dispersion relation (3)
has a solution of the form

ω = ±kvFe (1 + δ) , (4)

where δ is a small correction. Find δ. This solution is called “zero-point sound”.

(e) [5 marks] Sketch ω vs. k in a degenerate plasma. What is the main difference between this
and the situation in a non-degenerate plasma? Without derivations, but explaining your
reasoning, make an educated guess about what other propagating waves one might hope
to find in a degenerate electron-ion plasma and what their damping properties might be.
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3. (a) [2 marks] Consider two arbitrary smooth functions of angle-action coordinates, g(θ,J)
and h(θ,J). Using these coordinates write down the expression for the Poisson bracket
[g, h].

(b) [6 marks] Let f be the distribution function of an ensemble of particles whose motion is
governed by the ‘mean field + perturbation’ Hamiltonian

H(θ,J, t) = H0(J) + δΦ(θ,J, t). (5)

The equation governing the evolution of f is

df

dt
=

∂f

∂t
+ [f,H] = 0. (6)

Let f(θ,J, t) = f0(J)+δf(θ,J, t), where f0(J) is the unperturbed DF. Fourier expanding
the potential as δΦ =

∑
k δΦk(J, t) exp(ik·θ) and similarly for δf , where k ∈ Z3, assuming

all perturbations are small, and assuming that δΦ is switched on at t = 0 and that
δfk(J, 0) = 0, show that the linear response of the DF satisfies

δfk(J, t) = ik · ∂f0
∂J

∫ t

0
dt′δΦk(J, t

′)e−ik·Ω(J)(t−t′), (7)

where you should define the frequency vector Ω(J).

(c) [6 marks] Consider a galaxy consisting of an initially spherically symmetric dark matter
halo, plus a rigidly rotating ‘bar’ of stars which is centred at the origin and which rotates
anticlockwise about the z axis. In the absence of the bar, the dynamics of a dark matter
particle is governed by the Hamiltonian H0(J). Let the bar perturbation have potential
δΦ. Each dark matter particle then moves in the time-dependent Hamiltonian H = H0+
δΦ. Let the dark matter distribution function be f , normalized such that

∫
dθdJf = 1.

Suitable angle-action coordinates for describing this system are

θ = (θr, θψ, θφ), J = (Jr, L, Lz), (8)

where in particular, Jr is the radial action, L is the specific angular momentum, and Lz
is the z-component of specific angular momentum. Write down Hamilton’s equation for
the evolution of Lz. Hence show that the total torque induced by the bar upon the halo,
per unit halo mass, is equal to

T (t) = −
∫

dθdJ f(θ,J, t)
∂δΦ(θ,J, t)

∂θφ
. (9)

Making the same expansions as in part (a), show that

T (t) =
∑
k

i(2π)3kφ

∫
dJ δfk(J, t)δΦ

∗
k(J, t), (10)

where k = (kr, kψ, kφ) are integer vectors. You may quote the identity
∫
dθ exp(ik · θ) =

(2π)3δ0k.

(d) [8 marks] Let the bar rotate anticlockwise with fixed angular speed Ωp > 0; then we can
write δΦk(J, t) = Ψk(J) exp(−ikφΩpt). By combining this with equations (7) and (10),
and stating any further assumptions you make, show that in the limit t → ∞, the torque
on the dark matter halo reaches a steady-state value:

T = −
∑
k

π(2π)3kφ

∫
dJ|Ψk|2k · ∂f0

∂J
δ (k ·Ω− kφΩp) . (11)

(e) [3 marks] Suppose f0(J) depends on J only through the mean field energy, i.e. f0 = f0(E)
where E = H0(J), and that df0/dE < 0. Show that in this case T is positive definite.
What might this result imply about the long-term evolution of stellar bars? (You may
assume the bar has a positive moment of inertia.)
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