GROUPS AND REPRESENTATION
 Hilary Term 2023

FRIDAY, 13TH JANUARY 2023, 09:30am to 12:30 pm

You should submit answers to three out of the four questions.
You have $\mathbf{3}$ hours writing time to complete the paper.
The use of a calculator and/or computer algebra packages is not allowed.

The numbers in the margin indicate the weight that the Examiners anticipate assigning to each part of the question.

Do not turn this page until you are told that you may do so

1. (a) [4 marks] Define the terms 'sub-group', 'normal sub-group', 'representation' and 'irreducible representation' (in the following also called 'irrep').
(b) [5 marks] For a group G and a sub-group $H \subset G$, a representation $R: G \rightarrow \operatorname{GL}(V)$ induces a representation $\tilde{R}: H \rightarrow \mathrm{GL}(V)$, by restriction from G to H. Explain the term 'branching' and why \tilde{R} can be reducible even though R is not. Give an example (by choosing suitable groups G and H and a representation R) for the phenomenon of an irreducible representation branching into a reducible representation.
(c) [5 marks] Explain how the cyclic groups \mathbb{Z}_{n} can be viewed as sub-groups of $U(1)$. Find the branching of the irreducible representations of $U(1)$ under \mathbb{Z}_{n}.
(d) [6 marks] Consider a field theory with a $U(1)$ symmetry and N complex scalar fields ϕ_{i} with $U(1)$ charges \hat{Q}_{i}, where $i=1, \ldots, N$. For a sub-group $\mathbb{Z}_{n} \subset U(1)$, what are the \mathbb{Z}_{n} charges \hat{q}_{i} of the fields ϕ_{i} ? Now suppose that the $U(1)$ symmetry is spontaneously broken by vacuum expectation values $\left\langle\phi_{i}\right\rangle \neq 0$. Determine under which conditions an unbroken \mathbb{Z}_{n} sub-group (where $n>1$) can be retained and express the largest possible n for such unbroken \mathbb{Z}_{n} symmetries in terms of the charges \hat{Q}_{i}.
(e) [5 marks] Consider a four-dimensional (relativistic) field theory with $U(1)$ (gauge) symmetry and M Weyl fermions ψ_{a} with $U(1)$ charges Q_{a}, where $a=1, \ldots, M$. What are the charges q_{a} of these fermions under a sub-group $\mathbb{Z}_{n} \subset U(1)$? Write down the condition for this $U(1)$ symmetry to be anomaly-free. What does this condition imply for the \mathbb{Z}_{n} charges q_{a} ?
2. Consider the permutation group $S_{4}=\{\sigma:\{1,2,3,4\} \rightarrow\{1,2,3,4\} \mid \sigma$ bijective $\}$.
(a) [5 marks] List the conjugacy classes of S_{4} (in terms of partitions of 4), determine the number of permutations in each class and explicitly provide one permutation per class. How many irreducible representations (over complex vector spaces) does S_{4} have?
(b) [4 marks] Write down explicitly two one-dimensional irreps R_{0} and R_{1} of S_{4} and their characters χ_{0} and χ_{1}. What are the dimensions of the other irreducible representations of S_{4} ?
(c) [8 marks] Consider the maps $R_{ \pm}: S_{4} \rightarrow \mathrm{GL}\left(\mathbb{C}^{4}\right)$ defined by $R_{+}(\sigma)\left(e_{i}\right)=e_{\sigma(i)}$ and $R_{-}(\sigma)\left(e_{i}\right)=\operatorname{sgn}(\sigma) e_{\sigma(i)}$. Here, $\sigma \in S_{4}$ is a permutation, e_{i}, where $i=1,2,3,4$, are the standard unit vectors of \mathbb{C}^{4} and sgn is the sign function for permutations. Show that $R_{ \pm}$are representations and compute their characters $\chi_{ \pm}$. Show that each of $R_{ \pm}$contains one one-dimensional and one three-dimensional irrep. Find the character χ_{3} of the threedimensional irrep R_{3} in R_{+}and the character χ_{4} of the three-dimensional irrep R_{4} in R_{-}.
(d) [4 marks] Based on the information collected so far, write down the character table of S_{4}.
(e) [4 marks] Consider a scalar field $\phi=\left(\phi_{1}, \phi_{2}, \phi_{3}\right)^{T}$ which transforms under the threedimensional S_{4} irrep R_{3} from part (c). Show that it is possible to write down S_{4} invariant quadratic and cubic terms in ϕ.
3. (a) [4 marks] State Schur's Lemma.
(b) [5 marks] Consider a group G, two inequivalent irreps R_{1} and R_{2} of G with dimensions n_{1} and n_{2} and the reducible representation R defined by the block matrices

$$
R(g)=\left(\begin{array}{ccccc}
R_{1}(g) & 0 & 0 & 0 & 0 \\
0 & R_{1}(g) & 0 & 0 & 0 \\
0 & 0 & R_{1}(g) & 0 & 0 \\
0 & 0 & 0 & R_{2}(g) & 0 \\
0 & 0 & 0 & 0 & R_{2}(g)
\end{array}\right)
$$

Find the most general form of matrices M (with size $\left.\left(3 n_{1}+2 n_{2}\right) \times\left(3 n_{1}+2 n_{2}\right)\right)$ which satisfy $[M, R(g)]=0$ for all $g \in G$.
(c) [4 marks] For a group G and a sub-group $H \subset G$ the commutant $C_{G}(H)$ of H in G is defined by $C_{G}(H)=\{g \in G \mid g h=h g \forall h \in H\}$. Show that the commutant is a sub-group of G.
(d) [5 marks] Consider the group $S U(5)$ and its $U(1)$ sub-group defined by the embedding $U(1) \ni z \mapsto \operatorname{diag}\left(z^{-2}, z^{-2}, z^{-2}, z^{3}, z^{3}\right) \in S U(5)$. Find the commutant $C_{S U(5)}(U(1))$ of this $U(1)$ in $S U(5)$.
(e) [7 marks] Write down the Young tableaux, tensors and highest-weight Dynkin labels for the $S U(5)$ representations $\mathbf{5}, \overline{\mathbf{5}}$ and $\mathbf{1 0}$. How do these representations branch under the sub-group $C_{S U(5)}(U(1)) \subset S U(5)$ found in part (d)?
4. (a) [5 marks] Write down the Dynkin diagram and the Cartan matrix for the algebra A_{3}. What are the weight systems of the A_{3} irreps with highest weight Dynkin labels ($1,0,0$) and $(0,0,1)$?
(b) [6 marks] Write down the Dynkin diagram and the Cartan matrix for D_{5} and find the weight system of the irrep with highest weight Dynkin label ($0,0,0,0,1$).
(c) [6 marks] Argue from the (extended) Dynkin diagram that $A_{1} \oplus A_{1} \oplus A_{3}$ is a maximal sub-algebra of D_{5}. The projection matrix $P=P\left(A_{1} \oplus A_{1} \oplus A_{3} \subset D_{5}\right)$ is given by

$$
P=\left(\begin{array}{ccccc}
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
-1 & -1 & -1 & -1 & 0
\end{array}\right),
$$

where the first two entries of a vector $P w$ (where w is a D_{5} weight) correspond to the two A_{1} Dynkin labels and the last three entries to the A_{3} Dynkin label. Use this projection matrix to find the branching of the D_{5} irrep from part (b) under the sub-algebra $A_{1} \oplus$ $A_{1} \oplus A_{3}$. Denote the $A_{1} \oplus A_{1} \oplus A_{3}$ representation obtained in this way by R.
(d) [8 marks] One family of the standard model of particle physics resides in the $S U_{w}(2) \times$ $S U_{c}(3) \times U_{Y}(1)$ representation $R_{F}=(\mathbf{2}, \mathbf{3})_{1} \oplus(\mathbf{1}, \overline{\mathbf{3}})_{-4} \oplus(\mathbf{1}, \overline{\mathbf{3}})_{2} \oplus(\mathbf{2}, \mathbf{1})_{-3} \oplus(\mathbf{1}, \mathbf{1})_{6}$, where the subscript denotes the $U_{Y}(1)$ charge. Show that, for a suitable embedding of $S U_{w}(2) \times S U_{c}(3)$ into $S U(2) \times S U(2) \times S U(4)$, the representation R from part (c) branches into a representation which contains all $S U_{w}(2) \times S U_{c}(3)$ representations in R_{F}. Next, find an embedding of $U_{Y}(1)$ into $S U(2) \times S U(2) \times S U(4)$ such that the $U_{Y}(1)$ charges in R_{F} are reproduced correctly. What is a possible interpretation of the $S U_{w}(2) \times S U_{c}(3) \times U_{Y}(1)$ representation which is contained in R but not in R_{F} ?

