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You should submit answers to all three questions.

The numbers in the margin indicate the weight that the Examiners anticipate
assigning to each part of the question.
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In the following two questions, we consider a plasma consisting of electrons with mass me, charge
−e, and number density ne and ions with mass mi, charge Ze, and number density ni. Assume
that Z ∼ 1 and me ≪ mi.

1. Consider a homogeneous two-species plasma (as outlined above) with a uniform equilibrium
magnetic field B0 = Bẑ.

(a) [5 marks] Starting from Maxwell’s equations, show that a plane-wave perturbation of the
form

δE = Ẽe−iωt+ik·r, δB = B̃e−iωt+ik·r, δJ = J̃e−iωt+ik·r

satisfies [
n2(k̂k̂− I) + ϵ

]
·Ẽ = 0,

where the dielectric tensor can be written

ϵ = I+
iσ

ϵ0ω
.

Define the index of refraction n, the conductivity tensor σ, and the dispersion relation.
Write down the components of the cold-plasma dielectric tensor ϵ in the right-handed
orthonormal basis {x̂, ŷ, ẑ} where x̂ = k/k, making sure to define any symbols you use.

(b) [5 marks] Assuming Ωe ∼ ωpe and
√
ΩiΩe ≪ ω ≪ Ωe, where the symbols ωpe, ωpi,Ωe,Ωi

have their usual meaning, show that

Ωi ≪ ωpi ≪ ω ≪ Ωe

and hence that, to lowest order, the cold-plasma dielectric tensor is given by

ϵ =

1 + ω2
pe/Ω

2
e −iω2

pe/Ωeω 0

iω2
pe/Ωeω 1 + ω2

pe/Ω
2
e 0

0 0 −ω2
pe/ω

2

 . (1)

Carefully justify any terms that you neglect.

(c) [10 marks] If n2 ∼ ωpe/ω, show that kde ≪ 1, where de = c/ωpe. Show that cold-plasma
dispersion relation for the dielectric tensor (1) gives

ω ≈ k∥kd
2
eΩe. (2)

(d) [5 marks] A radio hobbyist tunes their radio to 1–5 kHz and observes multiple signals
whose frequency decays monotonically from 5 kHz down to 1 kHz over a duration of
1 s. They conjecture that these signals are generated as broadband noise on the other
side of the planet and propagate as waves along Earth’s magnetic field according to (2)
and at an altitude comparable to Earth’s radius. Approximating Earth’s magnetic field
as B ∼ 10−5 T and Earth’s radius as 6400 km, estimate the density ne of the plasma
trapped in Earth’s magnetic field.
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2. Consider an inhomogeneous two-species plasma (as outlined above), with electron density ne(r)
confined in a θ-pinch with magnetic field B = Bẑ, where {r, φ, z} are the usual cylindrical
polar coordinates.

(a) [5 marks] What is the WKB approximation for a wave of characteristic wavelength λ
propagating through this plasma? Define the eikonal function S, the spatially varying
wavenumber k, and carefully state all ordering assumptions. Show that, to lowest order
in the appropriate expansion parameter, the frequency ω and wavenumber k satisfy the
cold-plasma dispersion relation at every point in space.

(b) [10 marks] Define the group velocity vg(r,k) and derive the ray-tracing equation

vg·∇k = − ∂ω

∂r

∣∣∣∣
k

.

Let us parametrise the position r along a ray as r(τ) where

dr

dτ
= vg.

Show that r(τ) and k(τ) along the ray satisfy the equations

dr

dτ
=

∂H

∂k

∣∣∣∣
r

,

dk

dτ
= − ∂H

∂r

∣∣∣∣
k

,

for an appropriate H(r,k) that you must determine.

(c) [5 marks] The O-mode satisfies ω2 = ω2
pe + k2c2, where ω2

pe = e2ne/ϵ0me. Show that the
position r(τ) along an O-mode ray satisfies

d2r

dτ2
= −dV

dr
,

where V (r) = c2ωpe(r)
2/2ω2.

(d) [15 marks] Consider a ray launched towards the plasma from the outside at r = d and
at an angle α from the centre of the θ-pinch. Working in cylindrical polar coordinates,
find an equation for d2r/dτ2 and thus deduce that the radial distance r0 at which the ray
reflects is determined by

ω2
pe(r0)

ω2
= 1−

(
d2

r20
− 1

)
sin2 α.
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3. Consider a plasma that obeys the Kinetic Magnetohydrodynamics (KMHD) approximation. In
what follows, all symbols have their usual meaning. Thus, α is the species index, the subscripts
⊥ and ∥ refer to the directions perpendicular and parallel, respectively, to the local direction
b of the magnetic field B = Bb, w = v − uα is the peculiar velocity of the particles, and uα

their mean velocity (in general, different for different species). You may quote and use any
result from the Lecture Notes without derivation. Some formulae that may prove useful are
listed on the next page.

(a) [7 marks] By any method you prefer, show that the gyroaveraged distribution function
fα(t, r, µ, ε), expressed in the variables µ = w2

⊥/2B (magnetic moment) and ε = mαw
2/2

(energy), satisfies (to lowest order in the high-flow regime),

Dfα
Dtα

+mα

[
w∥

(
qα
mα

E∥ −
Duα

Dtα
· b
)
+ µ

dB

dtα

]
∂f0α
∂ε

= 0, (3)

where
D

Dtα
=

d

dtα
+ w∥b ·∇,

d

dtα
=

∂

∂t
+ uα ·∇. (4)

(b) [8 marks] Hence, or otherwise, show that the total kinetic energy of the particle’s peculiar
motion, K =

∑
α

∫∫
drdw (mαw

2/2)fα, satisfies

dK

dt
= −

∫
dr
∑
α

P[fα] : ∇uα, P[fα] = p⊥[fα] (I− bb) + p∥[fα]bb, (5)

where p⊥[fα] =
∫
dw (mαw

2
⊥/2)fα and p∥[fα] =

∫
dwmαw

2
∥fα are the perpendicular and

parallel pressures, respectively. Interpret this result physically.

(c) [8 marks] Assume that the distribution consists of a spatially homogeneous mean and a
small perturbation: fα = f0α(µ, ε)+ δfα(t, r, µ, ε) and B = B0ẑ+ δB(t, r). Use the kinetic
equation (3), the exact result (5), and the conservation of the total energy of the plasma
(which you need not prove), to show that, to lowest order in perturbations,

d

dt

[
A +

∫
dr

(∑
α

mαnαu
2
α

2
+

B2

8π

)]
=

∫
dr
∑
α

P[f0α] : ∇uα, (6)

where A =
∑
α

∫∫
drdw

δf2
α

2(−∂f0α/∂ε)
. (7)

Note that, since f0α is a function of µ, and the exact B is involved in the definition of µ,
the pressure tensor P[f0α] = P[fα] − P[δfα] contains both the mean pressure and a part
of the perturbed pressure (the “non-resonant” part). Hint: To work out this perturbed
pressure, one expands µ inside f0α(µ, ε) in small δB/B0.

(d) [10 marks] Work out p⊥[f0α] and p∥[f0α], and hence show that the “generalised free en-
ergy” is conserved to lowest non-trivial order in the perturbations:

dF

dt
= 0, where F = A +

∫
dr

{∑
α

mαnαu
2
α

2
+

[
1−

∑
α

β∥α

2

(
1− p⊥α

p∥α

)]
δB2

⊥
8π

+

[
1−

∑
α

β⊥α

(
p⊥α

p∥α
Cα − 1

)] δB2
∥

8π

}
, (8)

where p⊥α, p∥α, β⊥α = 8πp⊥α/B
2
0 , β∥α = 8πp∥α/B

2
0 are all mean quantities, which can be

taken to be constant in time and space, and the constant Cα is defined by

2p2⊥α

p∥α
Cα = −2πm2

αB
2
0

∫∫
dεdµJµ2∂f0α

∂ε
(9)

(Cα = 1 if f0α is a bi-Maxwellian distribution). See next page for part (e).
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(e) [7 marks] What does the conservation of F imply for the stability of small perturbations
in KMHD? Use (8) to formulate a sufficient condition of stability. How is this result
compatible with the existence (or otherwise) of firehose and mirror instabilities?

Useful formulae:∫
dw = 2π

∫∫
dw∥dw⊥w⊥ = 2π

∫∫
dεdµJ, J =

B

mα|w∥|
, |w∥| =

√
2ε

mα
− 2µB, (10)

∂J

∂t
+∇ · ⟨ṙ⟩J +

∂

∂ε
⟨ε̇⟩J = 0 (conservation of phase-space volume), (11)∫

dww∥fα = 0 (defnition of peculiar velocity), (12)(
∂f0α
∂µ

)
ε

= B

[
1

w⊥

(
∂f0α
∂w⊥

)
w∥

− 1

w∥

(
∂f0α
∂w∥

)
w⊥

]
, (13)

d lnB

dtα
= bb : ∇uα −∇ · uα = − (I− bb) : ∇uα (the induction equation), (14)

lnB = ln
√
B2

0 + 2B0 · δB+ |δB|2 ≈ lnB0 +
δB∥

B0
+

δB2
⊥ − δB2

∥

2B2
0

(Taylor expansion). (15)
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