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1. [25 marks] Consider a particle moving in one dimension with coordinate x, massm and potential
V (x). Its action is

S[x(t′)] =

∫ t

0

dt′

{
m

2

(
dx

dt′

)2

− V (x(t′))

}
. (1)

Let H denote the quantum Hamiltonian for the particle, and let |xi⟩ and |xf ⟩ denote basis states
in the position representation. Then matrix elements of the time evolution operator have the
path integral representation

⟨xf |e−iHt/ℏ|xi⟩ =
∫

D[x(t′)]eiS[x(t′)]/ℏ. (2)

(a) [4 marks] Show (by transformation of the coordinate t′ or otherwise) that matrix elements
of the Boltzmann factor at inverse temperature β have the path integral representation

⟨xf |e−βH |xi⟩ =
∫

D[x(τ)]e−SEuc[x(τ)]/ℏ (3)

and give an expression for the Euclidean (or imaginary time) action SEuc[x(τ)].

(b) [4 marks] In the case of a free particle (V (x) = 0), find the path x0(τ) for which SEuc[x(τ)]
is stationary, as a function of the end-points xi and xf .

(c) [6 marks] By making the change of variables from x(τ) to y(τ) ≡ x(τ)− x0(τ) in the path
integral, show for the free particle that

⟨xf |e−βH |xi⟩ = N exp(− m

2βℏ2
[xf − xi]

2), (4)

Give an expression for N in terms of a path integral and discuss whether it depends on xi

and xf .

(d) [5 marks] A particle with coordinate y(t) undergoes a random walk as a function of time
t, described by the stochastic differential equation

dy(t)

dt
= η(t) (5)

where η(t) has a Gaussian distribution with mean ⟨η(t)⟩ = 0 and variance ⟨η(t1)η(t2)⟩ =
Γδ(t1 − t2). Find ⟨y(t)− y(0)⟩ and ⟨[y(t)− y(0)]2⟩.

(e) [6 marks] Discuss the relationship that exists (with suitable parameter values) between the
paths followed by the Brownian particle and the ones that contribute to the Euclidean path
integral for a free particle. Find the value of Γt required for this relationship to hold, in
terms of β, m and ℏ.
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2. [25 marks] A one-dimensional Ising antiferromagnet with nearest neighbour interactions is de-
fined as follows. Spins Sn = ±1 are located at sites n = 1 . . . N of a chain. Periodic boundary
conditions are applied, so that SN+1 ≡ S1. The energy of a configuration is

H = J

N∑
n=1

SnSn+1 (1)

with exchange energy J > 0.

(a) [5 marks] Describe the ground states of this model and give their number: (i) for N even,
and (ii) for N odd.

(b) [10 marks] Explain how the transfer matrix method may be used to study the statistical
mechanics of this model. Illustrate your answer by calculating the free energy FN and the
one-point and two-point correlations functions ⟨S1⟩ and ⟨S1Sn+1⟩, where ⟨. . .⟩ denotes an
average in the canonical ensemble and 0 ⩽ n ⩽ N − 1. You should give expressions that
are exact for finite N .

(c) [5 marks] Show, in the thermodynamic limit for finite inverse temperature β, that the
two-point correlation function has the form

⟨S1Sn+1⟩ = (−1)ne−n/ξ (2)

and give an expression for the correlation length ξ as a function of βJ .

(d) [5 marks] Calculate the low-temperature limiting form of the two-point correlation function

lim
βJ→∞

⟨S1Sn+1⟩. (3)

for finite N . How does your result depend on whether N is even or odd? Discuss the
physical reasons for the behaviour you find.
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3. [25 marks] Consider a system consisting of two single-particle orbitals that may be occupied by
fermions, with creation operators a†, b† and annihilation operators a, b obeying the anticom-
mutation relations {a†, a} = {b†, b} = 1 and {a, a} = {b, b} = {a, b} = 0. Number operators for
the orbitals are defined by Na = a†a and Nb = b†b. Let |0⟩ denote the vacuum for the system,
which satisfies a|0⟩ = b|0⟩ = 0. The system has the Hamiltonian

H = ε(a†a+ b†b) + ∆(ab+ b†a†) , (1)

where ε and ∆ are real, positive parameters.

(a) [6 marks] Determine the eigenvalues of Na and Nb and write their eigenstates in terms of
the creation operators and |0⟩.

(b) [6 marks] Consider the Bogoliubov transformation(
a
b†

)
=

(
u v
−v u

)(
c
d†

)
, (2)

where u and v are real parameters. Suppose that the creation operators c†, d† and anni-
hilation operators c, d satisfy the full standard set of fermion anticommutation relations.
Show that the transformation implies the stated anticommutation relations for a†, b† and
a, b provided that u and v satisfy a certain condition, which you should derive.

(c) [8 marks] Using this transformation, show that for a suitable choice of u and v the Hamil-
tonian has the form

H = λ(c†c+ d†d) + µ (3)

and determine λ and µ as a function of ε and ∆. What are the eigenvalues of H and their
degeneracies?

(d) [5 marks] Denote the vacuum for the operators c† and d† by |0̃⟩. It obeys c|0̃⟩ = d|0̃⟩ = 0.
Show that

|0̃⟩ = AeBa†b† |0⟩ (4)

where A and B are real parameters whose values you should determine as functions of ε
and ∆.
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