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1. Consider a plasma composed of ions, with massmi and charge qi, and electrons, with massme, immersed
in a uniform equilibrium magnetic field B0 = B0ẑ, where (x, y, z) are the usual Cartesian coordinates.
All other symbols have their usual definitions.

A wave with frequency ω ∼ ωpe ∼ Ωe ≫ kvth is launched into the plasma.

(a) [5 marks] Using the linearised cold-plasma equations of motion for ions and electrons, derive the
conductivity tensor σ for each species. Show that the dielectric tensor ϵ for the plasma is

ϵ =

 ϵ⊥ ig 0
−ig ϵ⊥ 0
0 0 ϵ∥

 ,

where ϵ⊥, ϵ∥, and g depend on ω2
pe, Ωe, and ω.

(b) [5 marks] We now choose k to lie in the (x, z) plane, making an angle θ with the background field
B0 = B0ẑ. That is, k = k sin θ x̂+ k cos θ ẑ, where k = |k|. Show that the waves satisfyϵ⊥ − n2 cos2 θ ig n2 cos θ sin θ

−ig ϵ⊥ − n2 0
n2 cos θ sin θ 0 ϵ∥ − n2 sin2 θ

 δE = 0,

where the index of refraction is given by n = kc/ω (where c is the speed of light).

Show that the cold plasma dispersion relation can be written as

tan2 θ = −
ϵ∥(n

2 −R)(n2 − L)

(ϵ⊥n2 −RL)(n2 − ϵ∥)
, (1)

where R and L are functions of ϵ⊥, ϵ∥, and g that you should determine.

(c) [3 marks] Using equation (1), write down a general condition for a resonance and a general condi-
tion for a cutoff.

(d) [2 marks] Explain how the following special cases can be recovered from the dispersion relation
(1): plasma oscillations, waves with right-handed polarisation, waves with left-handed polarisation,
ordinary waves (O-modes), and extra-ordinary waves (X-modes).

(e) [3 marks] Show that electrostatic waves satisfy the dispersion relation

k2⊥ϵ⊥ + k2∥ϵ∥ = 0.

Explain how, for parallel propagation, this dispersion relation is related to the resonance condition
you derived in part (c).

(f) [2 marks] Show that, for the ordinary wave (O-wave), the electric field only moves particles along
B0. Is the O-wave electrostatic? Explain your answer clearly.

2. An O-mode (as outlined above) is launched into a dense plasma column where the plasma frequency
varies with position according to

ω2
pe(x) = ω2

pe0

[
1−

( x

L

)2]
, |x| ⩽ L.

The plasma density is highest at x = 0 (with ωpe(0) = ωpe0) and decreases towards the edges (with
ω2
pe(±L) = 0). Assume that the wave frequency is chosen such that ω < ωpe0, so that the wave is

evanescent in the central high-density region (for |x| < xT ), but propagates in the outer, low-density
wings (for |x| > xT ). Here, xT denotes the turning point, i.e., the location where the wave transitions
between evanescent and propagating behaviour. In this question, any limits of special functions that
are proved in the appendices of the printed lecture notes may be used in your solution without proof,
provided that the result is clearly stated and referenced.
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(a) [5 marks] What is the WKB approximation for a wave of characteristic wavelength λ propagating
through this plasma? Define the eikonal function S, the spatially varying wavenumber k, and
carefully state all ordering assumptions. Show that, to lowest order in the appropriate expansion
parameter, the frequency ω and wavenumber k satisfy the cold-plasma dispersion relation at every
point in space. That is, show that a WKB solution for the perturbed electric field δE(x) obeys the
wave equation

∂2δE

∂x2
+ k2(x) δE = 0,

with the local dispersion relation

k2(x) =
ω2

c2

[
1−

ω2
pe(x)

ω2

]
.

(b) [2 marks] Show that the turning points, x = ±xT occur at xT = L
√
1− ω2/ω2

pe0.

(c) [3 marks] Write down the WKB solutions for δE(x) in each of the three regions: Region I (x <
−xT ), Region II (−xT < x < xT ), and Region III (x > xT ). Carefully define the local wavenumber
in each region. Ensure that you include all appropriate phase integrals and normalisation factors.

(d) [5 marks] Near a turning point (say, at x = −xT ) the wave equation can be linearised. Show
that the wave equation can be reduced to the standard Airy equation by introducing a change of
variables.

(e) [8 marks] Derive the connection formulas that relate the WKB solution in Region I to the Airy-
function solution near x = −xT . In particular, show that the cosine component in the WKB region
— with the −π/4 phase shift that arises from matching to the Airy function — corresponds to
the decaying exponential in the evanescent region. You may use the asymptotic forms of the Airy
function provided in the lecture notes.

(f) [8 marks] Propagate the solution through Region II from x = −xT to x = xT . We define the
tunnelling “action” by

η =

∫ xT

−xT

k2(x
′) dx′.

Derive the appropriate connection formulas at x = xT that match the evanescent solution to the
WKB solution in Region III. By imposing an appropriate restriction on the WKB solution in
Region III, obtain a relationship between the coefficients and show that the transmitted amplitude
is proportional to e−η. Conclude that the transmission coefficient is, to leading order,

T ≃ e−2η.

(g) [4 marks] Let R be the reflection coefficient. What is the value of R + T? Give a reason for your
answer. How would this value change if one of the cutoffs was replaced by a resonance.

(h) [5 marks] Finally, evaluate η explicitly. Discuss briefly the physical significance of this result.

3. Interchange Instability in KMHD. Consider a magnetised plasma in the Kinetic MHD approxi-
mation, consisting of any number of particle species α, each with its own mass mα, charge qα, number
density nα, pressure pα, and temperature Tα = pα/nα. Assume that the plasma is in a z-pinch equilib-
rium, i.e., that the equilibrium magnetic field B0 = B0b0 is purely circular while its strength B0 = |B0|
and the equilibrium profiles of density and pressure vary only in the radial direction. We shall work
in local coordinates (x, y, z) such that their corresponding unit vectors are: ẑ = b0 in the azimuthal
direction, x̂ in the radial direction, and ŷ = b0× x̂. In this notation, the relationships between the local
values of the equilibrium profiles, the field’s direction, and their gradients in a z-pinch equilibrium are∑

α

qαn0α = 0, ∇ · b0 = 0, b0 ·∇b0 = − x̂

R
, b0 ·∇x̂ =

b0
R
,

1

R
− 1

LB
=

β

2Lp
,
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where R is the radius of curvature of the magnetic field, β = 8πp0/B
2
0 , p0 =

∑
α p0α, and L−1

B =
−d lnB0/dx and L−1

p = −d ln p0/dx are the local gradient scale lengths of the magnetic and thermal
pressure, respectively; there is no equilibrium parallel electric field or mean motion of any kind. For
simplicity, we shall take the pressure gradient to be much steeper than any of the magnetic field’s
gradients, but also β ≪ 1, so that

1

Lp
≫ 1

LB
≈ 1

R
≫ β

Lp
. (2)

We shall assume the equilibrium distribution function to be

f0α(x, µ, v∥) =
n0α

π3/2v3thα
e−(2µB0+v2

∥)/v
2
thα ,

where µ is the first adiabatic invariant, v∥ the parallel velocity, and vthα =
√
2T0α/m the thermal speed

of the particles of species α. In what follows, we shall consider collisionless, infinitesimal perturbations
of this equilibrium: fα = f0α + δfα, B = B0 + δB, b = b0 + δb, mean velocities u, and parallel electric
field E∥.

(a) [5 marks] Show that the equilibrium described above is indeed a steady-state solution of the Kinetic
MHD system of equations.

(b) [12 marks] Linearise the KMHD equations for B and u = ∂ξ/∂t (where ξ is the displacement
vector) around this equilibrium, assume that perturbations vary on scales much shorter than the
equilibrium so all equilibrium quantities and their gradients can be treated as locally uniform,
Fourier-transform the perturbations in time (∂t → −iω) and in the two spatial directions transverse
to the pressure gradient (ŷ ·∇ → iky, b0 ·∇ → ik∥). Consider perturbations that have no variation
in the x direction at all, but ky ≫ k∥ ∼ ω/vA. Show that such perturbations will be pressure
balanced, viz.,

δB

B0
= −β

2

δp⊥
p0

, (3)

and satisfy (
ω2 − k2∥v

2
A

)
ξx = − 1

R

δp⊥ + δp∥

ρ0
,

where δp⊥ and δp∥ are, respectively, the perpendicular and parallel pressure perturbations (de-
fined as the sums of the corresponding pressure perturbations associated with all species), ρ0 =∑

α mαn0α, and vA = B0/
√
4πρ0 is the Alfvén speed.

(c) [12 marks] Use the KMHD drift-kinetic equation to calculate the pressure perturbations and hence
derive the dispersion relation

ω2 = k2∥v
2
A − 2p0

ρ0RLp
. (4)

In doing this calculation, you may assume that, in view of the pressure balance (3) and β ≪ 1,
δB/B0 can always be neglected in comparison with δp⊥/p0 and, as per (2), that the magnetic field’s
gradients can be neglected in comparison with the pressure gradient.

(d) [3 marks] If you have done correctly the calculation leading to (4), you must have paid careful
attention to the fact that the variables and the parallel gradients in the KMHD kinetic equation
are defined with respect to the exact magnetic field, which has to be perturbed correctly when
the equation is linearised. You should have beeen able to prove in the limits (2) that, remarkably
simply,

δfα ≈ −ξx
∂f0α
∂x

.

Explain what this means physically and why it is obvious that it should be so.

(e) [4 marks] What is the physical nature of the perturbations described by the dispersion relation (4)
and how does it depend on their wavenumber? Describe their time evolution and the physical
reasons for it. Would you expect the dispersion relation to be different if, instead of KMHD, the
MHD approximation were used? Make an educated guess as to what new effects might appear if
the assumptions (2) are relaxed.
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(f) [4 marks] What is the difference between the physics that you have derived here and the physics
of the ion-temperature-gradient (ITG) instability? Why have you not simply found the plasma to
be ITG-unstable, and in what limit, different from the one considered here, would you expect this
to happen?
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