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1. Consider a scalar field ϕ in four dimensions. The Lagrangian, including a quartic
interaction is

L =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 − λ

4!
ϕ4 . (1)

(a) [2 marks] Write down the path integral expression for the partition function for
this theory.

(b) [2 marks] Find the equation of motion for the Lagrangian L in equation (1).

(c) [5 marks] What are renormalizable terms in simple power counting? What is the
justification of not writing down the non-renormalizable terms in the Lagrangian?
Does the Lagrangian contain all possible renormalizable terms? Explain why any
missing renormalizable terms can be consistently omitted.

(d) [4 marks] Write down all the possible terms of dimension-6 in the scalar field
theory. Ignoring total derivative operators, you should find 7 operators.

(e) [4 marks] Using integration-by-parts, show that you can reduce the set of operators
to the set {ϕ6, ϕ3□ϕ, (□ϕ)2}, where □ ≡ ∂µ∂

µ.

(f) [4 marks] Certain higher-dimensional operators can also be removed (at that order
in power counting) by using equations of motion, or more precisely by a field
redefinition. Consider adding an operator to the Lagrangian of the form

O(x) = ϵf(ϕ(x))E(ϕ(x)) ,

where f(ϕ) is some local function of ϕ and E(ϕ) = 0 is the equation of motion.
Show that this operator can be removed atO(ϵ) by a field redefinition ϕ → ϕ−ϵf(ϕ)
in the partition function. (You can neglect the contribution from the Jacobian
arising from the field redefinition.)

(g) [4 marks] Using the equation of motion found in part (b) above, reduce further
the set of dimension-6 operators.
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2. Consider QED in four dimensions, using Feynman gauge throughout.

(a) [5 marks] Draw a labeled one loop diagram for the 1PI correction to the photon
propagator, iΠµν(q

2). Write down the Feynman amplitude for Πµν(q
2). You do

not have to simplify the expression yet.

(b) [5 marks] Using the Ward identity the 1PI correction can be put in the form

Πµν(q
2) = (q2gµν − qµqν)Π(q

2) .

Show that in d = 4− 2ϵ,

Π(q2) =
4ie2

(d− 1)q2

∫
ddℓ

(2π)d
−(d− 2)ℓ · (ℓ+ q) + dm2

((ℓ+ q)2 −m2)(ℓ2 −m2)
.

Extract the divergent part of Π(q2) as ϵ → 0. (Hint: you may find it easier to
massage the expression to scalar integrals provided below rather than use Feynman
parametrization.)

(c) [5 marks] Draw the one-loop diagram for the 1PI correction to the fermion prop-
agator,

−iΣ(p) ≡ −i(/pS(p
2) +M(p2)) ,

where S(p2) and M(p2) are Lorentz scalars. Write down the amplitude for Σ(p).
Using tr(/pΣ(p)), extract the divergent part of S(p2).

(d) [5 marks] Draw the one-loop diagram for the correction to the fermion-photon
vertex,

−ieΓµ(q2) ≡ −ie

(
γµF1(q

2) +
iσµνqν
2m

F2(q
2)

)
,

where qµ is the momentum on the photon line, σµν = i
2 [γ

µ, γν ], and F1(q
2) and

F2(q
2) are Lorentz scalars. Write down the amplitude. Using tr(Γµγµ), extract

the divergent part of F1(q
2).

(e) [5 marks] What is the MS renormalization scheme? Using results from above,
calculate the counterterms δ1, δ2 and δ3 at one loop in the MS scheme, and show
that δ1 = δ2.

Some useful information:

� Scalar integrals (d = 4− 2ϵ)

I2(p2) =
∫

ddℓ

(2π)d
1

((ℓ+ p)2 −m2)(ℓ2 −m2)
=

i

16π2

(
1

ϵ
+ finite

)
I1 =

∫
ddℓ

(2π)d
1

ℓ2 −m2
=

im2

16π2

(
1

ϵ
+ finite

)
� Gamma matrix trace identities:

tr(1) = 4

tr(any odd # of γ′s) = 0

tr(γµγν) = 4gµν
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� Gamma matrix contraction identities:

γµγµ = d

γµγ
νγµ = −(d− 2)γν

γµγ
νγργσγµ = −2γσγργν + (4− d)γνγργσ

� Feynman rules for QED in Feynman gauge:
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3. The Lagrangian for Abelian gauge theory is

L = −1

4
FµνF

µν .

(a) [5 marks] Follow the Faddeev-Popov procedure to derive the gauge-fixing and
ghost terms in the partition function. Choose the generalized Lorenz gauge,
∂µA

µ−ω(x) = 0 as the gauge fixing condition. Show that the ghost terms decouple
in this case. Do they also decouple for non-Abelian gauge fields?

(b) [5 marks] The Lagrangian for the Abelian Higgs model is

L = −1

4
FµνF

µν + |Dµϕ|2 −
1

2
λ(ϕ†ϕ− 1

2
f2)2 .

Write down the Lagrangian in terms of field fluctuations around the classical vac-
uum of the theory h(x) and π(x) defined by

ϕ(x) =
1√
2
(f + h(x))eiπ(x)/f .

Show that the Lagrangian is invariant under a local symmetry under which π(x)
also transforms as

π(x) → π(x) + fα(x) . (1)

Why is this a well-motivated form of parametrizing the fluctuations?

(c) [5 marks] Define the Unitarity gauge. What is the form of the gauge field propa-
gator in the Unitarity gauge? Discuss the high energy behaviour of the propagator
and its relation to power counting.

(d) [5 marks] The Rξ gauge condition is G(A) = 0, with

G(A) =
1√
ξ

(
∂µA

µ − ξef

(
1 +

h(x)

f

)2

π(x)

)
.

Explain the advantage of using this gauge fixing condition, and using equation (1)
derive the ghost terms in the Lagrangian. Do the ghost terms decouple?

(e) [5 marks] Write down the form of the gauge boson propagator in the Rξ gauge. In
a sentence or two, discuss how this shows that spontaneously broken gauge theories
are renormalizable in the power counting sense.
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