
A15089H1

Honour School of Mathematical and Theoretical Physics Part C
Master of Science in Mathematical and Theoretical Physics

Kinetic Theory

HILARY TERM 2025
THURSDAY 16 January, 9.30am - 12.30pm
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1. Consider a Hamiltonian system of N indistinguishable particles of unit mass subject to
an external potential U and interacting through a pairwise potential ϕ. Any function
F of the particle positions xi and velocities vi evolves according to

dF

dt
= {F,H},

where

H =

N∑
i=1

(
1

2
|vi|2 + U(xi)

)
+

∑
1⩽i<j⩽N

ϕ(|xi−xj |), {A,B} =

N∑
i=1

(
∂A

∂xi
· ∂B
∂vi

− ∂B

∂xi
· ∂A
∂vi

)
.

(a) [8 marks] By separating the Hamiltonian into a sum of three terms, or otherwise,
show that the one-particle distribution function f(x,v, t) evolves according to

∂f

∂t
+ v · ∇f −∇U · ∇vf =

∫
dv⋆

∫
dx⋆∇ϕ(|x− x⋆|) · ∇vf2,

where f2(x,v,x⋆,v⋆, t) is the two-particle distribution function, ∇ is the gradient
with respect to x, and ∇v is the gradient with respect to v.

(b) [6 marks] Briefly describe the approximations that allow this evolution equation
for f to be approximated by

∂f

∂t
+ v · ∇f −∇U · ∇vf =

∫
dv⋆

∫
dθ

∫
dφ B(|v − v⋆|, θ)

(
f ′f ′

⋆ − ff⋆
)
,

where the integration is over a unit hemisphere in θ and φ coordinates, B(|v−v⋆|, θ)
is the Boltzmann scattering kernel, f⋆ = f(x,v⋆, t) and similarly for f ′ and f ′

⋆.
Briefly describe the further approximations that lead to

∂f

∂t
+ v · ∇f −∇U · ∇vf = −1

τ

(
f − f (0)

)
,

where
f (0)(x,v, t) =

ρ

(2πΘ)3/2
exp

(
− |v − u|2

2Θ

)
.

Explain how ρ, u, and Θ are determined from f , and give an interpretation of the constant τ .
(c) [4 marks] Show that the fluid momentum evolves according to an equation of the

form
∂t(ρu) +∇ ·Π = F,

and give expressions for Π and F.
(d) [7 marks] Show that the pressure tensor P = Π− ρuu evolves according to

∂tPij + ∂k (ukPij +Qijk) + Pik
∂uj
∂xk

+ Pjk
∂ui
∂xk

= −1

τ

(
Pij − P

(0)
ij

)
,

and give an expression for Qijk in terms of f .
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2. Consider a one-dimensional plasma in which the equilibrium electron distribution f0(v)
is as depicted in the figure below: f0(v) ̸= 0 only for v ∈ [−v0, v0 + v2 − v1], with a
constant slope f ′

0(v) = ±f0(0)/v0 (positive at v < 0, negative at v > 0) everywhere
inside that interval except at v ∈ [v1, v2], where it has a plateau with f ′

0(v) = 0. We
seek linear perturbations of this plasma that have phase velocities greatly exceeding the
characteristic width of the ion distribution, so the latter’s contribution to the dielectric
function can be ignored:

ϵ(p, k) = 1−
ω2
pe

k2
1

n0

∫
CL

dv
f ′
0(v)

v − ip/k
, (1)

where we define n0 = v0f0(0) and ωpe = (4πe2n0/me)
1/2, −e and me being the electron

charge and mass, respectively, and CL is the Landau contour.

(a) [3 marks] At what values of the phase velocity u = ω/k do you expect a priori,
from the form of (1), that completely undamped waves (p = −iω, where ω is real)
might be able to exist?

(b) [5 marks] Show that the frequencies ω = ku and wavenumbers k of such undamped
waves must satisfy the following dispersion relation

ln
u2|v2 − u|

|v0 + u||v1 − u||v0 + v2 − v1 − u|
= (kλDe)

2, (2)

where, by definition, λDe = v0/ωpe. You will be able to do parts (c)–(f) using (2).
(c) [3 marks] What waves exist in this plasma at short wavelengths, kλDe ≫ 1? Why

are they undamped?
(d) [5 marks] Now consider long wavelengths, kλDe ≪ 1. Assume that v2−v1 ≪ v0, v1.

Show that the dispersion relation has three solutions:

ω ≈ ±ωpe, ω ≈ k

[
v1 + (v2 − v1)

v21
v20

]
. (3)

The first two are the familiar Langmuir waves (plasma oscillations) and the third
resembles a sound wave, so could be called the electron acoustic wave (EAW). Why
does the EAW not exist in a Maxwellian plasma?

(e) [5 marks] Continue assuming v2 − v1 ≪ v0, v1, but consider arbitrary wavenum-
bers kλDe. Derive the dispersion relation for the EAW,

ω ≈ k

[
v1 +

v2 − v1

1 + ek
2λ2

De(v20 − v21)/v
2
1

]
, (4)

and explain how it relates to your previous results.
(f) [4 marks] Assembling together the results that you have derived, sketch the three

branches of the dispersion relation ω vs. k for an electron plasma with a small
plateau.
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3. (a) [2 marks] Give two reasons why the kinetic theory of stellar sytems is usually
formulated in angle-action variables (θ,J) rather than position and velocity (x,v).

(b) [5 marks] Let f be the distribution function (DF) of a razor-thin disk of stars
whose phase space location is determined by angle-action coordinates θ = (θφ, θR),
J = (Jφ, JR), and whose motion is governed by the ‘mean field + perturbation’
Hamiltonian

H(θ,J, t) = H0(J) + δΦ(θ,J, t). (1)

Let f(θ,J, t) = f0(J, t) + δf(θ,J, t), where f0(J, t) is the angle-independent part
of the DF. Fourier expanding the potential as δΦ =

∑
k δΦk(J, t) exp(ik · θ) and

similarly for δf , where k = (kφ, kR) ∈ Z2, assuming all perturbations are small,
and ignoring initial conditions, show that the linear response of the DF satisfies

δfk(J, t) = i

∫ t

0
dt′ k · ∂f0(J, t

′)

∂J
e−ik·Ω(t−t′)δϕk(J, t

′). (2)

where you should define the frequency vector Ω(J).
(c) [6 marks] Define the marginalized DF of angular momenta F0(Jφ, t) ≡ 2π

∫∞
0 dJR f0(J, t).

By first deriving an equation for ∂f0/∂t, show that to second order in small quan-
tities,

∂F0

∂t
= − ∂

∂Jφ
Q0, (3)

where the flux Q0 is given by

Q0(Jφ, t) = −2π
∑
k

kφ

∫ ∞

0
dJR

∫ t

0
dt′k · ∂f0(J, t

′)

∂J
e−ik·Ω(t−t′)δϕk(J, t

′)δϕ∗
k(J, t).

(4)

(d) [3 marks] Now specialize to a perturbation of the form

δϕk(J, t) = uk(J)e
−ikφΩpte−(t−tpeak)

2/(2τ2), (5)

where the function uk(J) is equal to zero unless kφ = ±m. Interpret what this
perturbation might correspond to physically. Show that it drives a flux

Q0(Jφ, t) = −2π
∑

kφ=±m

∑
kR

kφ

∫ ∞

0
dJR |uk(J)|2

×
∫ t

0
dt′k · ∂f0(J, t

′)

∂J
e−iωk(J)(t−t′)e−(t−tpeak)

2/(2τ2)e−(t′−tpeak)
2/(2τ2), (6)

where you should define the frequency ωk(J).
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(e) [7 marks] We will now calculate the total change to the angular momentum DF,
∆F0(Jφ) ≡ F0(Jφ, t → ∞) − F0(Jφ, 0) . First, argue that if the perturbation is
sufficiently short lived, we can replace all lower time integration limits by −∞ and
we can ignore the slow time evolution of f0(J, t

′) on the right hand side of (6).
Then, assuming ωk(J) does not depend on JR, show that

∆F0 =
(8π5)1/2m

Γ

∂

∂Jφ

∑
kR

RΓ(ωmkR)

∫ ∞

0
dJR |umkR |

2

(
m

∂f0
∂Jφ

+ kR
∂f0
∂JR

)
, (7)

with Γ ≡ (
√
2τ)−1 and RΓ(ω) ≡ (

√
2πΓ)−1e−ω2/(2Γ2). You may use the identity

Re

∫ ∞

−∞
dx

∫ x

−∞
dy e−ia(x−y)e−(x2+y2)/(2σ2) = πσ2e−a2σ2

. (8)

(f) [2 marks] Give a physical interpretation of this result, focusing on the contribu-
tions from (i) kR = 0 and (ii) kR = ±1.
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